BaiDing213 / NLPCC2020-MAMS
NLPCC 2020 MAMS 多属性多情感分析任务 第一名解决方案
☆11Updated last year
Related projects ⓘ
Alternatives and complementary repositories for NLPCC2020-MAMS
- 疫情期间网民情绪识别比赛分享+top1~3解决方案☆51Updated 4 years ago
- 采用bert进行事件抽取,[cls]进行事件分类,最后一层向量进行序列标注,两个任务同时训练。☆11Updated 3 years ago
- 参考NER,基于BERT的电商评论观点挖掘和情感分析☆41Updated 5 years ago
- 电商评论情感分类☆15Updated 4 years ago
- 利用bert预训练模型生成句向量或词向量☆28Updated 4 years ago
- ccks2020的比赛-面向金融领域的篇章级事件主体与要素抽取(一)事件主体抽取☆17Updated 3 years ago
- 复现了论文《基于主题模型的短文本关键词抽取及扩展》的代码☆29Updated 4 years ago
- Cascade bert+word vec and one layer FLAT, trained by adversarial FGM and Stochastic Weight Averaging☆23Updated 3 years ago
- NLP实验:新词挖掘+预训练模型继续Pre-training☆47Updated last year
- 2022搜狐校园算法大赛NLP赛道第一名开源方案(实验代码)☆78Updated 2 years ago
- bert-flat 简化版 添加了很多注释☆15Updated 3 years ago
- Toyhom的学习之路,Toyhom's way of learning☆28Updated 4 years ago
- A simple implement for multi-label text classification with Bert. I will extend the code to a higher version for very long text over 512,…☆11Updated 3 years ago
- WoBERT Pytorch 版本,中文词汇级Bert:WoBERT学习☆21Updated 3 years ago
- 基于TextCNN,测试三种对抗训练模型(FGSM,PGD,FREE)在text classification上的表现☆10Updated 2 years ago
- knowledge distillation: 采用知识蒸馏,训练bert后指导textcnn☆16Updated 3 years ago
- 之江-电商评论观点挖掘的比赛,基于pytorch-transformers版本,暂时只实现了BERT做aspect+opinion+属性分类+情感极性的联合标注,还未加上CRF。☆33Updated 5 years ago
- 疫情期间网民情绪识别比赛baseline,使用BERT进行端到端的fine-tuning,datafountain平台,平台评测F1值0.716。☆35Updated 4 years ago
- 细粒度的情感分析(属性词提取,句法依存分析)☆35Updated last year
- Multi-Label Text Classification Based On Bert☆19Updated last year
- 文本分类baseline:BERT、半监督学习UDA、对抗学习、数据增强☆98Updated 3 years ago
- 多标签文本分类☆28Updated 3 years ago
- multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search☆32Updated 2 years ago
- 2020 AI研习社 金融用户评论分类☆14Updated 4 years ago
- MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification☆23Updated 4 years ago
- 2021搜狐校园文本匹配算法大赛☆16Updated 3 years ago
- 本项目是NLP领域一些任务的基准模型实现,包括文本分类、命名实体识别、实体关系抽取、NL2SQL、CKBQA以及BERT的各种下游任务应用。☆47Updated 3 years ago
- CCF BDCI 2019 互联网新闻情感分析 复赛top1解决方案☆12Updated 4 years ago
- Pytorch进行长文本分类。这里用到的网络有:FastText、TextCNN、TextRNN、TextRCNN、Transformer☆45Updated 4 years ago