davidkim205 / translationLinks
☆12Updated last year
Alternatives and similar repositories for translation
Users that are interested in translation are comparing it to the libraries listed below
Sorting:
- 1-Click is all you need.☆61Updated last year
- ☆20Updated 11 months ago
- BERT score for text generation☆12Updated 5 months ago
- 자체 구축한 한국어 평가 데이터셋을 이용한 한국어 모델 평가☆31Updated last year
- Make running benchmark simple yet maintainable, again. Now only supports Korean-based cross-encoder.☆18Updated this week
- ☆35Updated last year
- KoCommonGEN v2: A Benchmark for Navigating Korean Commonsense Reasoning Challenges in Large Language Models☆25Updated 10 months ago
- huggingface에 있는 한국어 데이터 세트☆28Updated 8 months ago
- bpe based korean t5 model for text-to-text unified framework☆63Updated last year
- StrategyQA 데이터 세트 번역☆22Updated last year
- 🤗 최소한의 세팅으로 LM을 학습하기 위한 샘플코드☆58Updated 2 years ago
- OpenOrca-KO dataset을 활용하여 llama2를 fine-tuning한 Korean-OpenOrca☆19Updated last year
- Official repository for KoMT-Bench built by LG AI Research☆63Updated 10 months ago
- ☆14Updated 2 years ago
- evolve llm training instruction, from english instruction to any language.☆118Updated last year
- ☆10Updated last year
- ☆32Updated last year
- CLIcK: A Benchmark Dataset of Cultural and Linguistic Intelligence in Korean☆45Updated 6 months ago
- ☆11Updated 6 months ago
- Reward Model을 이용하여 언어모델의 답변을 평가하기☆29Updated last year
- nllb-200 distilled 350M for English to Korean translation☆26Updated last year
- IA3방식으로 KoAlpaca를 fine tuning한 한국어 LLM모델☆69Updated last year
- 한국어 의료 분야 특화 챗봇 프로젝트☆31Updated last year
- ☆31Updated 6 months ago
- [KO-Platy🥮] Korean-Open-platypus를 활용하여 llama-2-ko를 fine-tuning한 KO-platypus model☆75Updated last year
- 금융 도메인에 특화된 한국어 임베딩 모델☆20Updated 10 months ago
- For the rlhf learning environment of Koreans☆23Updated last year
- Train GEMMA on TPU/GPU! (Codebase for training Gemma-Ko Series)☆47Updated last year
- KoTAN: Korean Translation and Augmentation with fine-tuned NLLB☆23Updated last year
- Performs benchmarking on two Korean datasets with minimal time and effort.☆40Updated last month