cqu20160901 / yolov8pose_dfl_rknn_CplusplusLinks
yolov8pose 部署版本,将DFL放在后处理中,部署rk3588.
☆11Updated last year
Alternatives and similar repositories for yolov8pose_dfl_rknn_Cplusplus
Users that are interested in yolov8pose_dfl_rknn_Cplusplus are comparing it to the libraries listed below
Sorting:
- yolov8 瑞芯微 rknn 板端 C++部署,使用平台 rk3588,全网最简单、运行最快的部署方式。☆40Updated 2 years ago
- yolov8n 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、速度最快的部署方式。☆47Updated last year
- yolov8在hisi3536a推理☆11Updated 2 years ago
- yolov8pose 瑞芯微 rknn 板端 C++部署。☆37Updated 2 years ago
- yolov8 瑞芯微 rknn 板端 C++部署。☆114Updated 2 years ago
- yolov8n 167fps on rk3588 with python(running without draw and show imgs)☆15Updated last year
- yolov8pose 部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon)。☆41Updated 2 years ago
- 海康威视工业相机在瑞芯微RK3588下调用NPU跑YOLOv5☆32Updated 2 years ago
- ☆13Updated last year
- rknn-3588部署yolov5,利用线程池实现npu推理加速;Deploying YOLOv5 on RKNN-3588, utilizing a thread pool to achieve NPU inference acceleration.☆84Updated 8 months ago
- yolov11 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆78Updated 10 months ago
- yolov5 detector using rockchip rknn in C++☆44Updated 3 years ago
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆28Updated last year
- python版本基于rk3588的NanoTrack,每秒可达120FPS☆137Updated 3 years ago
- ☆115Updated last year
- Track vehicles and persons on rk3588 / rk3399pro.☆448Updated 2 years ago
- yolov8n 部署版本,后处理 用python语言和C++语言形式进行改写,便于移植不同平台(onnx、tensorRT、RKNN、Horzion)☆158Updated 2 years ago
- This project implements YOLOv11 inference on the RK3588 platform using the RKNN framework. With deep optimization of the official code an…☆67Updated last year
- yolov8seg 瑞芯微 rknn 板端 C++部署,使用平台 rk3588。☆30Updated last year
- yolov8s在rk3588的推理部署,并使用多线程池并行npu推理加速☆58Updated last year
- Some changes on original repo☆27Updated 2 years ago
- ☆14Updated last year
- RKNN-YOLOV5-BatchInference-MultiThreadingYOLOV5多张图片多线程C++推理☆22Updated 2 years ago
- yolov11 的tensorRT C++ 部署,后处理使用cuda实现比较耗时的操作。☆47Updated 4 months ago
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆48Updated last year
- 使用Opencv中的DNN模块对YOLOv8的所有类型模型,YOLOV9目标检测模型,YOLO11全系列模型进行了推理☆105Updated last year
- YOLOv5 in PyTorch > ONNX > CoreML > TFLite☆265Updated 3 months ago
- 使用ONNXRuntime部署百度飞桨开源PP-Vehicle车辆分析,包含车辆检测,识别车型和车辆颜色,车牌检测,车牌识别5个功能,不依赖PaddlePaddle就能运行,包含C++和Python两个版本的程序☆64Updated 2 years ago
- YoloV8 NPU for the RK3566/68/88☆81Updated last year
- TensorRT+YOLO系列的 多路 多卡 多实例 并行视频分析处理案例☆322Updated 11 months ago