chansonZ / book-ml-sem
《机器学习:软件工程方法与实现》Method and implementation of machine learning software engineering
☆186Updated 2 years ago
Alternatives and similar repositories for book-ml-sem
Users that are interested in book-ml-sem are comparing it to the libraries listed below
Sorting:
- 🤓 Important machine learning knowledge, each article deeply analyzes theoretical knowledge☆118Updated 5 years ago
- A practical feature engineering handbook☆323Updated 4 years ago
- A feature engineering kit for each issue, to give you a deeper and deeper understanding of the work of feature engineering!☆673Updated 4 years ago
- 统计学习方法训练营课程作业及答案,视频笔记在线阅读地址:https://relph1119.github.io/statistical-learning-method-camp☆196Updated 2 years ago
- 主要存 储Datawhale组队学习中“SQL”方向的资料。☆181Updated 3 years ago
- WeChat Official Accounts, zhihu and CSDN'blog code☆262Updated 5 years ago
- Basic data mining model, including feature importance display☆465Updated 9 months ago
- 使用sklearn做特征工程☆172Updated 6 years ago
- 本人多次机器学习与大数据竞赛Top5的经验总结,满满的干货,拿好不谢☆393Updated 4 years ago
- 人工智能算法方面的综合资料合集:包括求职面试、机器学习、深度学习、强化学习等方面的资料和代码☆294Updated 4 years ago
- 数据科学/人工智能比赛解决方案汇总☆531Updated 4 years ago
- 记录我学习数据挖掘过程的笔记和见到的奇技☆121Updated 6 years ago
- 500+ spark short code examples in jupyter notebook!☆101Updated 5 years ago
- 1st place solution for the AntaiCup-International-E-commerce-Artificial-Intelligence-Challenge☆181Updated 5 years ago
- 2019年CCF大数据与计算智能大赛乘用车细分市场销量预测冠军解决方案☆259Updated 5 years ago
- 《智能风控实践指南:从模型、特征到决策》代码。 《智能风控实践指南:从模型、特征到决策》书籍配套Python代码。☆109Updated 2 years ago
- 这是一个完整的,端到端的机器学习项目,非常适合有一定基础后拿来练习,以提高对完整机器学习项目的认识☆384Updated 6 years ago
- python实现GBDT的回归、二分类以及多分类,将算法流程详情进行展示解读并可视化,庖丁解牛地理解GBDT。Gradient Boosting Decision Trees regression, dichotomy and multi-classification ar…☆734Updated 5 years ago
- numpy 实现的 周志华《机器学习》书中的算法及其他一些传统机器学习算法☆235Updated 5 years ago
- ☆148Updated 3 years ago
- 智能风控:原理、算法与工程实践 代码☆77Updated 4 years ago
- 深度之眼《百面机器学习》训练营☆98Updated 5 years ago
- interpretable-ml-book中文翻译☆138Updated 4 years ago
- 《智能风控——原理、算法与工程实践》☆28Updated 4 years ago
- 🔥数据科学竞赛 Baseline & Topline☆141Updated last year
- ☆121Updated 5 years ago
- 开源的各大比赛baseline☆377Updated 2 years ago
- 各种机器学习方法在sklearn中的使用-菜菜的机器学习sklearn课堂☆95Updated 5 years ago
- 深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系sc…☆166Updated 6 years ago
- 作者:张君颖,个人项目作品展:https://lotbear.com☆32Updated 4 years ago