cainsmile / GA_for_Feature_SelectionLinks
使用遗传算法结合决策树做特征选择/Using genetic algorithm for feature selection with decision tree
☆25Updated 7 years ago
Alternatives and similar repositories for GA_for_Feature_Selection
Users that are interested in GA_for_Feature_Selection are comparing it to the libraries listed below
Sorting:
- 基于遗传算法的特征选择☆127Updated 5 years ago
- Cost-Sensitive Learning / ReSampling / Weighting / Thresholding / BorderlineSMOTE / AdaCost / etc.☆107Updated 4 years ago
- 常用的特征选择方法☆68Updated 3 years ago
- 集成学习Stacking方法详解☆75Updated 5 years ago
- Oversampling for imbalanced learning based on k-means and SMOTE☆127Updated 4 years ago
- Oversampling method based on relative density☆13Updated 4 years ago
- feature selections and extractions☆88Updated last year
- 数据预处理之缺失值处理,特征选择☆21Updated 6 years ago
- Creating tabular GAN on credit card dataset☆20Updated 5 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆41Updated 5 years ago
- Learning and Recording☆34Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- Weighted LSSVM for regression☆38Updated 6 years ago
- Implementations of various feature selection methods☆24Updated 4 years ago
- Theano implementation of Cost-Sensitive Deep Neural Networks☆26Updated 7 years ago
- Autoencoders in PyTorch☆101Updated 5 years ago
- BLS Code☆123Updated 6 years ago
- 类别不平衡学习,包括采样、代价敏感学习、决策输出补偿以及集成学习等内容☆36Updated 4 years ago
- 随机森林,Random Forest(RF)☆406Updated 5 years ago
- Use Genetic Algorithm and Simulate Anneal for feature selection. 用遗传算法/模拟退火算法进行特征选择.☆30Updated 5 years ago
- 包含一些比较常见的数据挖掘竞赛或者项目的源码☆129Updated 6 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆289Updated 5 years ago
- 本项目开发了一个机器学习和深度学习的训练工具。该训练工具基于sklearn和pytorch,不仅支持常规训练、交叉验证训练,还支持贝叶斯搜索参数,并可随时自动保存训练模型和日志。☆12Updated last year
- UnSupervised and Semi-Supervise Anomaly Detection / IsolationForest / KernelPCA Detection / ADOA / etc.☆298Updated 4 years ago
- There are some reproduced algorithms for learning from imbalanced data, including over-sampling,under-sampling and boosting☆12Updated last year
- here is the introduce of bls☆69Updated 4 years ago
- A Particle Swarm Optimization (PSO) for Feature Selection. Using PySwarm.☆53Updated 7 years ago
- This method is a new oversampling algorithm and can circumvent the deficiency of WK-SMOTE (and SMOTE as well as its variants) caused by r…☆16Updated 2 years ago
- [ICDE'20] ⚖️ A general, efficient ensemble framework for imbalanced classification. | 泛用,高效,鲁棒的类别不平衡学习框架☆259Updated last year
- The python implementation of tri-triaing☆50Updated 6 years ago