cainsmile / GA_for_Feature_Selection
使用遗传算法结合决策树做特征选择/Using genetic algorithm for feature selection with decision tree
☆24Updated 6 years ago
Alternatives and similar repositories for GA_for_Feature_Selection:
Users that are interested in GA_for_Feature_Selection are comparing it to the libraries listed below
- 基于遗传算法的特征选择☆126Updated 5 years ago
- Artificial Intelligence☆77Updated last year
- 数据预处理之缺失值处理,特征选择☆21Updated 5 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- Use Genetic Algorithm and Simulate Anneal for feature selection. 用遗传算法/模拟退火算法进行特征选择.☆31Updated 4 years ago
- feature selections and extractions☆87Updated 7 months ago
- 集成学习Stacking方法详解☆70Updated 5 years ago
- 数据特征工程、各种机器学习回归模型、回归数据预处理☆39Updated 5 years ago
- A Particle Swarm Optimization (PSO) for Feature Selection. Using PySwarm.☆53Updated 6 years ago
- 支持向量机,Support Vector Machine(SVM),多类分类☆30Updated 8 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 5 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- Weighted LSSVM for regression☆38Updated 6 years ago
- Oversampling method based on relative density☆11Updated 4 years ago
- Cost-Sensitive Learning / ReSampling / Weighting / Thresholding / BorderlineSMOTE / AdaCost / etc.☆105Updated 4 years ago
- Oversampling for imbalanced learning based on k-means and SMOTE☆124Updated 3 years ago
- 卷积神经网络提取特征并用于SVM//www.cnblogs.com/chuxiuhong/p/6132814.html☆15Updated 6 years ago
- 机器学习预测模型,分别用逻辑回归,决策树,随机森林,神经网络,XGBOOST和支持向量机算法建模,交叉验证,并选出AUC最优的模型。特征工程优化后,AUC值达到0.8259☆54Updated 4 years ago
- PSO algorithm for multi-parameters optimizaiton☆66Updated 6 years ago
- 本项目开发了一个机器学习和深度学习的训练工具。该训练工具基于sklearn和pytorch,不仅支持常规训练、交叉验证训练,还支持贝叶斯搜索参数,并可随时自动保存训练模型和日志。☆11Updated last year
- 机器学习算法超参数的优化方法——基于hyperopt和bayes_opt☆15Updated 6 years ago
- ☆15Updated 4 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆115Updated 4 years ago
- featselector是一个基于统计分析和模型选择的特征选择器.☆14Updated 5 years ago
- A small project abot GA and ANN,基于TensorFlow实现基于遗传算法的神经网络结构搜索技术,在威斯康星乳腺癌细胞分类的数据集上面进行实验,并与传统的机器学习的分类算法进行对比,验证该算法的结果的优劣性。☆35Updated 4 years ago
- 在sklearn下,几种常用的特征选择方法☆40Updated 9 years ago
- This toolbox offers advanced feature selection tools. Several modifications, variants, enhancements, or improvements of algorithms such a…☆32Updated 4 years ago
- There are some reproduced algorithms for learning from imbalanced data, including over-sampling,under-sampling and boosting☆11Updated last year
- 麻雀算法优化支持向量机 python实现☆13Updated 2 years ago
- AutoEncoder implements by keras. Including AE, DAE, DAE_CNN, VAE, VAE_CNN, CVAE, Sparse AE, Stacked DAE.☆40Updated 4 years ago