bojone / oppo-text-matchLinks
小布助手对话短文本语义匹配的一个baseline
☆139Updated 4 years ago
Alternatives and similar repositories for oppo-text-match
Users that are interested in oppo-text-match are comparing it to the libraries listed below
Sorting:
- A baseline for WenTianSearch☆86Updated 3 years ago
- ☆34Updated 4 years ago
- 天池人工智能创新赛3-ch12hu团队周星星分享☆27Updated 4 years ago
- NLP中文预训练模型泛化能力挑战赛☆43Updated 4 years ago
- 天池大赛疫情文本挑战赛线上第三名方案分享☆228Updated 4 years ago
- 天池阿里灵杰问天引擎电商搜索算法赛非官方 baseline,又名 NLP 从入门到 22/2771。☆91Updated 3 years ago
- GAIIC2022商品标题实体识别Baseline,使用GlobalPointer实现,线上0.80349☆54Updated 3 years ago
- NEZHA: Neural Contextualized Representation for Chinese Language Understanding☆262Updated 4 years ago
- 全球人工智能技术创新大赛-赛道三-冠军方案☆239Updated 4 years ago
- ccf 2020 qa match competition top1☆267Updated 4 years ago
- 基于tensorflow1.x的预训练模型调用,支持单机多卡、梯度累积,XLA加速,混合精度。可灵活训练、验证、预测。☆59Updated 4 years ago
- CCF BDCI 2020 房产行业聊天问答匹配赛道 A榜47/2985☆41Updated 4 years ago
- Pattern-Exploiting Training在中文上的简单实验☆174Updated 4 years ago
- ☆45Updated 4 years ago
- a baseline to practice☆45Updated 4 years ago
- 天池-新冠疫情相似句对判定大赛 Rank8☆52Updated 5 years ago
- datagrand 2019 information extraction competition rank9☆130Updated 5 years ago
- TIANCHI-小布助手对话短文本语义匹配BERT baseline☆32Updated 4 years ago
- Label Mask for Multi-label Classification☆57Updated 4 years ago
- 全球人工智能技术创新大赛-赛道三:小布助手对话短文本语义匹配☆38Updated 4 years ago
- 2021搜狐校园文本匹配算法大赛 分比我们低的都是 帅哥队☆43Updated 4 years ago
- ☆92Updated 5 years ago
- 天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch☆24Updated 4 years ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆178Updated 3 years ago
- DataFountain第五届达观杯第4名方案☆50Updated 2 years ago
- 2022搜狐校园算法大赛NLP赛道第一名开源 方案(实验代码)☆88Updated 3 years ago
- DIAC2019基于Adversarial Attack的问题等价性判别比赛☆82Updated 5 years ago
- NLP中文预训练模型泛化能力挑战赛(https://tianchi.aliyun.com/competition/entrance/531841/introduction?spm=5176.12281957.1004.2.7a883eafYhYhOq)☆37Updated 4 years ago
- transformers implement (architecture, task example, serving and more)☆96Updated 3 years ago
- NLP实验:新词挖掘+预训练模型继续Pre-training☆48Updated last year