bojone / CLUE-bert4kerasLinks
真 · “Deep Learning for Humans”
☆142Updated 3 years ago
Alternatives and similar repositories for CLUE-bert4keras
Users that are interested in CLUE-bert4keras are comparing it to the libraries listed below
Sorting:
- Pattern-Exploiting Training在中文上的简单实验☆174Updated 5 years ago
- CoSENT、STS、SentenceBERT☆171Updated 8 months ago
- 全局指针统一处理嵌 套与非嵌套NER☆255Updated 4 years ago
- NEZHA: Neural Contextualized Representation for Chinese Language Understanding☆261Updated 4 years ago
- 中文NLP数据集☆158Updated 6 years ago
- 句子匹配模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆100Updated 2 years ago
- experiments of some semantic matching models and comparison of experimental results.☆163Updated 2 years ago
- 中文无监督SimCSE Pytorch实现☆135Updated 4 years ago
- ☆87Updated 3 years ago
- 整理一下在keras中使用T5模型的要点☆174Updated 3 years ago
- RoFormer升级版☆154Updated 3 years ago
- chinese version of longformer☆116Updated 4 years ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆178Updated 3 years ago
- Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021☆239Updated 3 years ago
- 基于SpanBert的中文指代消解,pytorch实现☆101Updated 2 years ago
- ☆92Updated 5 years ago
- 全球人工智能技术创新大赛-赛道三-冠军方案☆239Updated 4 years ago
- ☆129Updated 2 years ago
- 中文版unilm预训练模型☆83Updated 4 years ago
- 机器检索阅读联合学习,莱斯杯:全国第二届“军事智能机器阅读”挑战赛 rank6 方案☆128Updated 5 years ago
- A PyTorch-based toolkit for natural language processing☆159Updated 2 years ago
- Knowledge Graph☆175Updated 3 years ago
- ccf 2020 qa match competition top1☆268Updated 4 years ago
- 对话改写介绍文章☆98Updated 2 years ago
- R-Drop方法在中文任务上的简单实验☆91Updated 3 years ago
- 中文自然语言推理数据集(A large-scale Chinese Nature language inference and Semantic similarity calculation Dataset)☆433Updated 5 years ago
- 从头训练MASK BERT☆138Updated 2 years ago
- P-tuning方法在中文上的简单实验☆140Updated 4 years ago
- 对ACL2020 FastBERT论文的复现,论文地址//arxiv.org/pdf/2004.02178.pdf☆194Updated 3 years ago
- 基于 Tensorflow,仿 Scikit-Learn 设计的深度学习自然语言处理框架。支持 40 余种模型类,涵盖语言模型、文本分类、NER、MRC、知识蒸馏等各个领域☆117Updated 2 years ago