Wangdoudou8 / text-summarization-csdnLinks
An open source project on my CSDN blog, whose dataset is the CNN/DM and whose model is T5.
☆12Updated 2 years ago
Alternatives and similar repositories for text-summarization-csdn
Users that are interested in text-summarization-csdn are comparing it to the libraries listed below
Sorting:
- 中文文本摘要生成模型☆21Updated 3 years ago
- ACE2005中文数据集处理(中文信息信息抽取任务)☆21Updated 4 years ago
- Using Bert/Roberta + LSTM/GRU/BiLSTM/TextCNN to do the sentiment analysis on the imdb datasets.☆142Updated 2 years ago
- ☆32Updated 2 years ago
- 中文命名实体识别:BERT-BiLSTM-CRF模型实现中文,数据集使用CLUENER2020☆75Updated 3 years ago
- A PyTorch implementation of a BiLSTM\BERT\Roberta(+CRF) model for Named Entity Recognition.☆504Updated 4 years ago
- ☆27Updated 2 years ago
- 新闻标题摘要生成模型,基于T5-PEGASUS。News title summary generation model☆19Updated 3 years ago
- 中文命名实体识别☆47Updated 3 years ago
- 基于GOOGLE T5中文生成式模型的摘要生成/指代消解,支持batch批量生成,多进程☆226Updated last year
- Exercises of Natural Language Process.☆34Updated 3 years ago
- 利用传统方法(N-gram,HMM等)、神经网络方法(CNN,LSTM等)和预训练方法(Bert等)的中文分词任务实现【The word segmentation task is realized by using traditional methods (n-gram, …☆35Updated 3 years ago
- Code for ACL 2023 paper "Rethinking Multimodal Entity and Relation Extraction from a Translation Point of View"☆18Updated last year
- NLP常见任务实现(pytorch版)☆126Updated 5 years ago
- [NLP] A english to chinese translator using Transformer structure☆13Updated last year
- 从零开始学习构建智能对话系统☆39Updated 4 years ago
- 基于BERT和知识图谱的中文电子病例医学命名实体识别☆17Updated 4 years ago
- Triple-GNNs for DiaASQ☆12Updated last year
- Using BERT+Bi-LSTM+CRF☆139Updated 3 years ago
- 全局指针统一处理嵌套与非嵌套NER的Pytorch实现☆398Updated 2 years ago
- 基于pytorch + bert的多标签文本分类(multi label text classification)☆107Updated 2 years ago
- SimCSE中文语义相似度对比学习模型☆88Updated 3 years ago
- 基于GPT2的中文文本摘要生成☆26Updated 2 years ago
- ☆41Updated 2 years ago
- [NLP] A Named Entity Recognition project for the medical records (from ccks2019) using BERT+BiLSTM+CRF☆18Updated last year
- 实现功能:新输入一段文本,与已有数据进行相似度进行比较,返回TOP10的文本。主要实现方法:jieba中文分词、gensim、TF-IDF词汇重要性、cosine余弦相似度。☆11Updated 5 years ago
- 基于pytorch+bert的中文文本分类☆86Updated 2 years ago
- ☆417Updated last year
- 利用bert和textcnn解决多标签文本分类的demo。☆33Updated 2 years ago
- awesome-multimodal-named-entity-recognition☆60Updated last year