StrayDragon / exp-llm-mcp-ragLinks
基于 KelvinQiu802/llm-mcp-rag 的 Python 实现版本,用于学习和实践 LLM、MCP 和 RAG 技术
☆128Updated 6 months ago
Alternatives and similar repositories for exp-llm-mcp-rag
Users that are interested in exp-llm-mcp-rag are comparing it to the libraries listed below
Sorting:
- ☆228Updated 5 months ago
- 一个简单的多模态RAG项目☆238Updated 5 months ago
- 复现大模型相关算法及一些学习记录☆2,366Updated last week
- Implementation of all RAG techniques in a simpler way(以简单的方式实现所有 RAG 技术)☆383Updated 5 months ago
- This is a multi agent tutorial based on the CAMEL framework, aimed at understanding how to build an Agent Society from the ground up!☆582Updated 2 weeks ago
- ☆733Updated last week
- LLM + MCP + RAG = Magic☆402Updated 6 months ago
- ☆374Updated last year
- 从零实现一个小参数量中文大语言模型。☆866Updated last year
- 一个很小很小的RAG系统☆306Updated 6 months ago
- 一个基于langchain实现RAG的简单示例☆568Updated 4 months ago
- 基于RAG的私有知识库问答系统☆366Updated 11 months ago
- ☆115Updated 4 months ago
- 从无名小卒到大模型(LLM)大英雄~ 欢迎关注后续!!!☆1,763Updated 2 weeks ago
- Learning LLM Implementaion and Theory for Practical Landing☆185Updated 10 months ago
- 中文翻译的 Hands-On-Large-Language-Models (hands-on-llms),动手学习大模型☆1,572Updated 2 weeks ago
- 大模型/LLM推理和部署理论与实践☆353Updated 3 months ago
- ☆313Updated 6 months ago
- Practice to LLM.☆2,005Updated last month
- 🔍大模型应用开发实战一:RAG技术全栈指南,在线阅读地址:https://datawhalechina.github.io/all-in-rag/☆1,106Updated this week
- Use interactive notebook to break down MiniMind code and learn from scratch.☆99Updated 7 months ago
- A simple and trans-platform agent framework and tutorial☆187Updated last week
- 本项目为书籍《大模型RAG实战》的代码以及资料汇总。☆259Updated 11 months ago
- 从零实现一个 llama3 中文版☆980Updated last year
- 大模型算法岗面试题(含答案):常见问题和概念解析 "大模型面试题"、"算法岗面试"、"面试常见问题"、"大模型算法面试"、"大模型应用基础"☆1,374Updated 2 months ago
- ☆40Updated 5 months ago
- 📚 从零开始的智能体原理与实践教程☆1,643Updated this week
- 开源向量数据库部署教程☆87Updated 2 weeks ago
- A simple and trans-platform rag framework and tutorial☆219Updated last month
- 在本项目中模拟健康档案私有知识库构建和检索全流程,通过一份代码实现了同时支持多种大模型(如OpenAI、阿里通义千问等)的RAG(检索增强生成)功能:(1)离线步骤:文档加载->文档切分->向量化->灌入向量数据库;在线步骤:获取用户问题->用户问题向量化->检索向量数据库…☆188Updated last year