Sharpiless / lane-detection-for-huawei-competitionLinks
2021第三届华为云人工智能大赛 · 无人车挑战杯——车道线检测模块
☆12Updated 3 years ago
Alternatives and similar repositories for lane-detection-for-huawei-competition
Users that are interested in lane-detection-for-huawei-competition are comparing it to the libraries listed below
Sorting:
- The improved model for multi-object detection and lane line segmentation based on the YoloP model.☆14Updated 2 years ago
- python+opencv实现对显著区域高速的车道线检测☆14Updated 6 years ago
- 车道线检测和距离提醒☆22Updated 5 years ago
- yolov5模型训练后量化代码☆19Updated 4 years ago
- UNetMultiLane 多车道线和车道线类型识别部署版本,测试不同平台部署(onnx、tensorRT、RKNN、Horzion),可识别所在的车道和车道线的类型。☆27Updated 11 months ago
- Official YOLOv7训练自己的数据集并实现端到端的TensorRT模型加速推断☆47Updated 2 years ago
- 使用opencv部署深度学习车牌检测与识别,包含Python和C++两种版本的实现☆50Updated 4 years ago
- 单目行车测距摄像头 用于电子科技大学“创客杯”大赛☆33Updated 3 years ago
- 用语义分割的方式来做车道线检测☆11Updated 5 years ago
- 车道线检测Lanenet TensorRT加速C++实现☆22Updated 3 years ago
- “领航”辅助自动驾驶系统☆13Updated 5 years ago
- ☆44Updated 3 years ago
- 基于yoloP的三任务模型修改成2任务模型,去掉可行驶区域的实例分割☆14Updated 3 years ago
- 基于DeepStream6.0和yolov5-6.0的目标检测☆19Updated 3 years ago
- 使用ONNXRuntime部署LSTR基于Transformer的端到端实时车道线检测,包含C++和Python两个版本的程序☆21Updated 2 years ago
- 分别使用OpenCV,ONNXRuntime部署yolov5不规则四边形目标检测,包含C++和Python两个版本的程序☆27Updated 3 years ago
- Advanced lane detection using computer vision☆12Updated 6 years ago
- Chinese plate detection(基于YOLOv3的中文车牌检测)☆11Updated 4 years ago
- 🎉Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 🎉YOLOv5算法(ver.6及ver.5)的Qt-GUI实现☆31Updated 3 years ago
- 使用OpenCV部署HybridNets,同时处理车辆检测、可驾驶区域分割、车道线分割,三项视觉感知任 务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 彻底摆脱对任何深度学习框架的依赖。☆20Updated 2 years ago
- 交通视频监测程序,用以车辆跟踪、闯红灯检测及越线检测☆14Updated 4 years ago
- 此代码用于目标检测,模型小,检测速度快速,适合没GPU显卡的嵌入式设备运行,比如“树莓派”、ARM开发板、嵌入式开发板。☆42Updated 4 years ago
- 【中软杯国二开源】基于PaddleOCR和深度学习的企业实体识别☆20Updated 4 years ago
- This project is demonstrating simple traffic counting on toll road or highway using image segmentation technique with low light environme…☆26Updated 2 years ago
- 借助于Ascend310 AI处理器完成深度学习算法部署任务,应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。☆29Updated 4 years ago
- 旷视AI智慧交通开源赛道仙交小分队解决方案☆17Updated 3 years ago
- 学习yolo算法和rknn框架☆35Updated 3 years ago
- ncnn 实现一些项目例子☆25Updated 2 years ago
- 车辆检测、跟踪、计数☆16Updated 4 years ago
- 一种适合工业级应用的基于深度学习的实时人脸检测与识别算法的C++实现,仅仅只依赖opencv库☆50Updated 3 years ago