Pysamlam / Tips-of-Feature-engineering
A feature engineering kit for each issue, to give you a deeper and deeper understanding of the work of feature engineering!
☆673Updated 3 years ago
Related projects ⓘ
Alternatives and complementary repositories for Tips-of-Feature-engineering
- 🤓 Important machine learning knowledge, each article deeply analyzes theoretical knowledge☆118Updated 4 years ago
- A practical feature engineering handbook☆319Updated 4 years ago
- Basic data mining model, including feature importance display☆461Updated 3 months ago
- Describe past Kaggle solutions☆370Updated 5 years ago
- 《剑指Offer》题目汇总&常考题总结(Python实现)☆457Updated 4 years ago
- The code for 2019 Tencent College Algorithm Contest, and the online result ranks 1st in the preliminary.☆702Updated 3 years ago
- 数据科学/人工智能比赛解决方案汇总☆523Updated 4 years ago
- 高效决策树算法系列笔记☆231Updated 5 years ago
- 《机器学习:软件工程方法与实现》Method and implementation of machine learning software engineering☆183Updated last year
- AI圈Noah plan-AI数据竞赛Top可复现解决方案(Awesome Top Solution List of Excellent AI Competitions)☆315Updated 5 years ago
- 500+ spark short code examples in jupyter notebook!☆100Updated 4 years ago
- 2019年CCF大数据与计算智能大赛乘用车细分市场销量预测冠军解决方案☆254Updated 4 years ago
- 本人多次机器学习与大数据竞赛Top5的经验总结,满满的干货,拿好不谢☆389Updated 3 years ago
- 这是一个完整的,端到端的机器学习项目,非常适合有一定基础后拿来练习,以提高对完整机器学习项目的认识☆375Updated 5 years ago
- 阿水的数据竞赛开源分支☆349Updated 4 years ago
- ☆619Updated 4 years ago
- 使用sklearn做特征 工程☆167Updated 6 years ago
- 统计学习方法训练营课程作业及答案,视频笔记在线阅读地址:https://relph1119.github.io/statistical-learning-method-camp☆194Updated last year
- 1st place solution for the AntaiCup-International-E-commerce-Artificial-Intelligence-Challenge☆179Updated 4 years ago
- 开源 的各大比赛baseline☆376Updated 2 years ago
- Tensorflow 2.0 Notes 提供了TF2.0案例实战以及TF2.0基础实战,目标是帮助那些希望和使用Tensorflow 2.0进行深度学习开发和研究的朋友快速入门,其中包含的Tensorflow 2.0教程基本通过测试保证可以成功运行(有问题的可以提issu…☆268Updated 4 years ago
- [译] fast.ai 机器学习和深度学习中文笔记☆413Updated 3 years ago
- XGBoost 中文文档☆565Updated last year
- 马上AI全球挑战者大赛 rank 1st☆253Updated 6 years ago
- ☆53Updated 5 years ago
- python实现GBDT的回归、二分类以及多分类,将算法流程详情进行展示解读并可视化,庖丁解牛地理解GBDT。Gradient Boosting Decision Trees regression, dichotomy and multi-classification ar…☆722Updated 5 years ago
- Super-Machine-Learning-Revision-Notes☆76Updated 5 years ago
- 基础的深度学习实验研究结果汇总笔记☆502Updated last year