OscarSavolainen / Quantization-TutorialsLinks
A bunch of coding tutorials for my Youtube videos on Neural Network Quantization.
☆29Updated last year
Alternatives and similar repositories for Quantization-Tutorials
Users that are interested in Quantization-Tutorials are comparing it to the libraries listed below
Sorting:
- TensorRT encapsulation, learn, rewrite, practice.☆29Updated 3 years ago
- b站上的课程☆82Updated 2 years ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆64Updated last year
- EasyNN是一个面向教学而开发的神经网络推理框架,旨在让大家0基础也能自主完成推理框架编写!☆37Updated last year
- A light llama-like llm inference framework based on the triton kernel.☆171Updated last month
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆54Updated last year
- Some common CUDA kernel implementations (Not the fastest).☆29Updated 2 months ago
- Quick and Self-Contained TensorRT Custom Plugin Implementation and Integration☆79Updated 8 months ago
- 一大波学习onnx的案例☆25Updated last year
- ☆26Updated 2 years ago
- hands on model tuning with TVM and profile it on a Mac M1, x86 CPU, and GTX-1080 GPU.☆49Updated 2 years ago
- ☆21Updated 4 years ago
- 分层解耦的深度学习推理引擎☆79Updated 11 months ago
- code reading for tvm☆76Updated 4 years ago
- ☆30Updated last year
- ☆145Updated last year
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆115Updated 6 months ago
- Lab 5 project of MIT-6.5940, deploying LLaMA2-7B-chat on one's laptop with TinyChatEngine.☆18Updated 2 years ago
- Collection of blogs on AI development☆23Updated last year
- ☆177Updated 2 years ago
- 该代码与B站上的视频 https://www.bilibili.com/video/BV18L41197Uz/?spm_id_from=333.788&vd_source=eefa4b6e337f16d87d87c2c357db8ca7 相关联。☆70Updated 2 years ago
- ☆21Updated last year
- base quantization methods including: QAT, PTQ, per_channel, per_tensor, dorefa, lsq, adaround, omse, Histogram, bias_correction.etc☆51Updated 3 years ago
- ☆19Updated last month
- Implement custom operators in PyTorch with cuda/c++☆76Updated 3 years ago
- CUDA 6大并行计算模式 代码与笔记☆61Updated 5 years ago
- 🤖FFPA: Extend FlashAttention-2 with Split-D, ~O(1) SRAM complexity for large headdim, 1.8x~3x↑🎉 vs SDPA EA.☆250Updated this week
- CUDA 8-bit Tensor Core Matrix Multiplication based on m16n16k16 WMMA API☆35Updated 2 years ago
- A tutorial for CUDA&PyTorch☆227Updated last week
- ☆40Updated 8 months ago