OscarSavolainen / Quantization-Tutorials
A bunch of coding tutorials for my Youtube videos on Neural Network Quantization.
☆15Updated 10 months ago
Alternatives and similar repositories for Quantization-Tutorials:
Users that are interested in Quantization-Tutorials are comparing it to the libraries listed below
- 使用 CUDA C++ 实现的 llama 模型推理框架☆48Updated 4 months ago
- TensorRT encapsulation, learn, rewrite, practice.☆28Updated 2 years ago
- ☆18Updated last week
- Some common CUDA kernel implementations (Not the fastest).☆17Updated last week
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆80Updated 2 months ago
- b站上的课程☆71Updated last year
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆38Updated 7 months ago
- ☆24Updated last year
- ☆113Updated last year
- A light llama-like llm inference framework based on the triton kernel.☆100Updated 2 weeks ago
- hands on model tuning with TVM and profile it on a Mac M1, x86 CPU, and GTX-1080 GPU.☆45Updated last year
- Examples of CUDA implementations by Cutlass CuTe☆146Updated last month
- code reading for tvm☆75Updated 3 years ago
- 分层解耦的深度学习推理引擎☆72Updated last month
- learning how CUDA works☆221Updated 3 weeks ago
- Optimize softmax in triton in many cases☆20Updated 6 months ago
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆60Updated 7 months ago
- Quick and Self-Contained TensorRT Custom Plugin Implementation and Integration☆53Updated 9 months ago
- 🎓Automatically Update circult-eda-mlsys-tinyml Papers Daily using Github Actions (Update Every 8th hours)☆10Updated this week
- 用C++实现一个简单的Transformer模型。 Attention Is All You Need。☆47Updated 4 years ago
- ☆36Updated 5 months ago
- Implement custom operators in PyTorch with cuda/c++☆56Updated 2 years ago
- Implement Flash Attention using Cute.☆74Updated 3 months ago
- ☆19Updated 3 years ago
- base quantization methods including: QAT, PTQ, per_channel, per_tensor, dorefa, lsq, adaround, omse, Histogram, bias_correction.etc☆42Updated 2 years ago
- TensorRT-in-Action 是一个 GitHub 代码库,提供了使用 TensorRT 的代码示例,并有对应 Jupyter Notebook。☆15Updated last year
- ☆145Updated 2 months ago
- CUDA SGEMM optimization note☆13Updated last year
- EasyNN是一个面向教学而开发的神经网络推理框架,旨在让大家0基础也能自主完成推理框架编写!☆26Updated 7 months ago
- 该代码与B站上的视频 https://www.bilibili.com/video/BV18L41197Uz/?spm_id_from=333.788&vd_source=eefa4b6e337f16d87d87c2c357db8ca7 相关联。☆66Updated last year