OscarSavolainen / Quantization-Tutorials
A bunch of coding tutorials for my Youtube videos on Neural Network Quantization.
☆16Updated 11 months ago
Alternatives and similar repositories for Quantization-Tutorials:
Users that are interested in Quantization-Tutorials are comparing it to the libraries listed below
- TensorRT encapsulation, learn, rewrite, practice.☆28Updated 2 years ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆49Updated 5 months ago
- EasyNN是一个面向教学而开发的神经网络推理框架,旨在让大家0基础也能自主完成推理框架编写!☆27Updated 7 months ago
- b站上的课程☆74Updated last year
- 🎓Automatically Update circult-eda-mlsys-tinyml Papers Daily using Github Actions (Update Every 8th hours)☆10Updated this week
- ☆29Updated 5 months ago
- ☆24Updated last year
- ☆19Updated last month
- base quantization methods including: QAT, PTQ, per_channel, per_tensor, dorefa, lsq, adaround, omse, Histogram, bias_correction.etc☆43Updated 2 years ago
- An onnx-based quantitation tool.☆71Updated last year
- Some common CUDA kernel implementations (Not the fastest).☆17Updated this week
- simplify >2GB large onnx model☆55Updated 4 months ago
- hands on model tuning with TVM and profile it on a Mac M1, x86 CPU, and GTX-1080 GPU.☆47Updated last year
- ☆19Updated last month
- 该代码与B站上的视频 https://www.bilibili.com/video/BV18L41197Uz/?spm_id_from=333.788&vd_source=eefa4b6e337f16d87d87c2c357db8ca7 相关联。☆67Updated last year
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆39Updated 8 months ago
- CUDA SGEMM optimization note☆13Updated last year
- A light llama-like llm inference framework based on the triton kernel.☆108Updated this week
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆85Updated 3 months ago
- ☆122Updated last year
- ☆63Updated 5 months ago
- async inference for machine learning model☆26Updated 2 years ago
- ☆40Updated 9 months ago
- Using pattern matcher in onnx model to match and replace subgraphs.☆78Updated last year
- TensorRT 2022 亚军方案,tensorrt加速mobilevit模型☆64Updated 2 years ago
- 用C++实现一个简单的Transformer模型。 Attention Is All You Need。☆50Updated 4 years ago
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆63Updated 8 months ago
- 📚FFPA(Split-D): Yet another Faster Flash Attention with O(1) GPU SRAM complexity large headdim, 1.8x~3x↑🎉 faster than SDPA EA.☆169Updated 2 weeks ago
- code reading for tvm☆76Updated 3 years ago
- Optimize softmax in triton in many cases☆20Updated 7 months ago