OscarSavolainen / Quantization-Tutorials
A bunch of coding tutorials for my Youtube videos on Neural Network Quantization.
☆14Updated 8 months ago
Alternatives and similar repositories for Quantization-Tutorials:
Users that are interested in Quantization-Tutorials are comparing it to the libraries listed below
- Some common CUDA kernel implementations (Not the fastest).☆15Updated 3 months ago
- TensorRT encapsulation, learn, rewrite, practice.☆28Updated 2 years ago
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆35Updated 5 months ago
- EasyNN是一个面向教学而开发的神经网络推理框架,旨在让大家0基础也能自主完成推理框架编写!☆24Updated 5 months ago
- 分层解耦的深度学习推理引擎☆70Updated last month
- b站上的课程☆69Updated last year
- base quantization methods including: QAT, PTQ, per_channel, per_tensor, dorefa, lsq, adaround, omse, Histogram, bias_correction.etc☆42Updated 2 years ago
- 用C++实现一个简单的Transformer模型。 Attention Is All You Need。☆42Updated 3 years ago
- Quick and Self-Contained TensorRT Custom Plugin Implementation and Integration☆50Updated 7 months ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆44Updated 2 months ago
- ☆33Updated 3 months ago
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆34Updated 4 months ago
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆53Updated 5 months ago
- Examples of CUDA implementations by Cutlass CuTe☆132Updated 2 months ago
- Optimize softmax in triton in many cases☆17Updated 4 months ago
- 解读cudnn文档,掌握其用法☆16Updated 9 months ago
- ☆106Updated 10 months ago
- ☆17Updated 3 years ago
- ☆26Updated last week
- Free resource for the book AI Compiler Development Guide☆40Updated 2 years ago
- Serving Inside Pytorch☆151Updated last week
- ☆94Updated 3 years ago
- hands on model tuning with TVM and profile it on a Mac M1, x86 CPU, and GTX-1080 GPU.☆42Updated last year
- ☆142Updated 3 weeks ago
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆76Updated 3 weeks ago
- ☆140Updated 9 months ago
- Decoding Attention is specially optimized for multi head attention (MHA) using CUDA core for the decoding stage of LLM inference.☆27Updated 2 months ago
- llama 2 Inference☆41Updated last year
- ☆59Updated 2 months ago
- A minimalist and extensible PyTorch extension for implementing custom backend operators in PyTorch.☆31Updated 9 months ago