JohnsonGeng / malicious_trafficLinks
利用强化学习方法 DQN 生成基于机器学习的恶意流量检测模型
☆28Updated 4 years ago
Alternatives and similar repositories for malicious_traffic
Users that are interested in malicious_traffic are comparing it to the libraries listed below
Sorting:
- ☆153Updated 2 years ago
- 基于机器学习的恶意加密流量监测平台☆145Updated 4 years ago
- 使用卷积神经网络进行网络入侵检测,正确率可达99.5%☆196Updated 6 years ago
- 基于神经网络的流量异常检测☆150Updated 5 years ago
- Extract network flow features from PCAP files for machine learning and network analysis☆91Updated last month
- 基于机器学习的入侵检测系统☆83Updated 5 years ago
- 收集了部分将机器学习应用于网络流量分类的论文☆174Updated 5 years ago
- 从pcap获取流的基本信息工具☆230Updated 2 years ago
- 网络流量领域工具库、公开数据集及加密流量解析方法☆95Updated 2 years ago
- Reproduce the code of papers related to the field of NIDS(network intrusion detection system).入侵检测领域的相关论文复现/适配本地PC后的代码.☆26Updated 4 years ago
- Flow Interaction Graph based attack traffic detection system.☆184Updated last year
- 使用贝叶斯、神经网络、KNN进行入侵检测(KDD-CUP99)☆81Updated 5 years ago
- This is a Python version of CICFlowmeter-V4.0 (formerly known as ISCXFlowMeter) - an Ethernet traffic Bi-flow generator and analyzer for …☆80Updated 4 years ago
- Journal Article: Telematics and Informatics Reports☆11Updated 2 years ago
- CICIDS2017 dataset☆69Updated 4 years ago
- Use deep learning to classify the malicious traffic, and use TensorFlow2.0 to carry out it.☆42Updated 5 years ago
- 使用机器学习的恶意加密流量识别系统☆49Updated 2 years ago
- 基于 CNN + LSTM 的网络流量检测☆23Updated 2 years ago
- The project is to detect malware traffic in TLS flows using ML☆35Updated 5 years ago
- 将大容量PCAP按流切分成小PCAP☆24Updated 2 years ago
- BUPT SCSS大三小学期 机器学习分析恶意加密流量包项目☆65Updated 5 years ago
- 机器学习/深度学习实现入侵检测项目☆60Updated 2 years ago
- 论文:A Deep Hierarchical Network for Packet-Level Malicious Traffic Detection的源代码☆32Updated 3 years ago
- 《基于卷积神经网络(CNN)的网络流量分类》优秀本科毕设相关文档☆74Updated 4 years ago
- UCAS春季学期课程 网络空间安全态势感知 加密流量分类中间结果数据集☆24Updated 3 years ago
- 该资源为安全相关的数据集,包括恶意URL、恶意流量、图像分类、恶意软件等,希望对您有所帮助~☆10Updated 4 years ago
- 基于机器学习的DDoS入侵检测算法☆13Updated 3 years ago
- 本科毕业设计,参考LENET-5模型,将恶意软件转化为灰度图,通过卷积神经网络实现了恶意软件检测分类,准确率达98%。☆25Updated 5 years ago
- Autoencoder based intrusion detection system trained and tested with the CICIDS2017 data set.☆39Updated 5 years ago
- Code for Paper : Efficient-CNN-BiLSTM-for-Network-IDS☆120Updated 3 years ago