HONKONE / MalwareMachineLearningLinks
基于恶意样本的图像化,对恶意代码进行机器学习并进行检测
☆11Updated 7 years ago
Alternatives and similar repositories for MalwareMachineLearning
Users that are interested in MalwareMachineLearning are comparing it to the libraries listed below
Sorting:
- 基于深度学习的恶意代码检测☆19Updated 5 years ago
- ☆11Updated 4 years ago
- 基于卷积神经网络的恶意软件检测方法☆58Updated 6 years ago
- 基于深度学习的恶意软件检测研究;MalConv;☆115Updated 3 years ago
- 恶意软件检测系统后端代码☆12Updated 5 years ago
- 主题为”基于GAN的恶意软件对抗样本生成“。首先介绍了恶意软 件发展现状,引出基于模式匹配、特征空间和问题空间三种方式去检测恶意软件。然后介绍了如何生成对抗样本攻击恶意软件检测器,详细介绍了基于GAN的恶意软件对抗样本的MalGAN框架,并对实验结果进行了对比。最后总结了结构…☆37Updated 4 years ago
- 使用Bert做embedding,结合BiLSTM做恶意软件的多分类任务☆42Updated 5 years ago
- ☆14Updated 6 years ago
- ☆20Updated 3 years ago
- 2021 CCF BDCI 数字安全公开赛“基于人工智能的恶意软件家族分类”赛题第二名Petrichor战队解决方案☆21Updated 3 years ago
- Codes for AICS'2019 challenge problem☆22Updated 6 years ago
- The code and data for Dynamic Malware Analysis with Feature Engineering and Feature Learning.☆34Updated last year
- FewShot Malware Classification based on API call sequences, also as code repo for "A Novel Few-Shot Malware Classification Approach for U…☆20Updated 4 years ago
- 基于机器学习的恶意代码检测☆12Updated 6 years ago
- ☆32Updated 3 years ago
- [IEEE S&P Workshop 2018] "Adversarial Deep Learning for Robust Detection of Binary Encoded Malware" Abdullah Al-Dujaili, Alex Huang, Erik…☆110Updated last year
- ☆27Updated 6 years ago
- 本科毕业设计,参考LENET-5模型,将恶意软件转化为灰度图,通过卷积神经网络实现了恶意软件检测分类,准确率达98%。☆25Updated 5 years ago
- 本科毕业设计_恶意代码检测分类平台☆41Updated 6 years ago
- Reproduction of the paper//arxiv.org/pdf/1803.04173.pdf☆19Updated 7 years ago
- Few-Shot malware classification using fused features of static analysis and dynamic analysis (基于静态+动态分析的混合特征的小样本恶意代码分类框架)☆34Updated 4 years ago
- Code of "MalDetect: A Structure of Encrypted Malware Traffic Detection"☆16Updated 6 years ago
- Code from the paper: Neurlux: Dynamic Malware Analysis Without Feature Engineering☆14Updated 5 years ago
- Source code of Malware Classification by Learning Semantic and Structural Features of Control Flow Graphs (TrustCom 2021)☆22Updated 3 years ago
- Training Vision Transformers from Scratch for Malware Classification☆29Updated 4 years ago
- adversarial examples, adversarial malware examples, adversarial malware detection, adversarial deep ensemble, Android malware variants☆57Updated 2 years ago
- 使用安卓Opcode字节码的N-gram序列特征进行恶意软件检测的完全步骤,使用算法RF,KNN☆18Updated 5 years ago
- ☆59Updated 7 years ago
- Original implementation and resources of DeepCASE as in the S&P '22 paper☆98Updated 2 years ago
- DataCon大数据安全分析大赛,2019年方向二(恶意代码检测)冠军源码、2020年方向五(恶意代码分析)季军源码☆109Updated 4 years ago