GreedyAIAcademy / Machine-Learning
讲解常见的机器学习算法
☆317Updated 4 years ago
Alternatives and similar repositories for Machine-Learning:
Users that are interested in Machine-Learning are comparing it to the libraries listed below
- 统计学习方法训练营课程作业及答案,视频笔记在线阅读地址:https://relph1119.github.io/statistical-learning-method-camp☆196Updated 2 years ago
- ☆275Updated 6 years ago
- 记录Learning from data一书中的习题解答☆78Updated 5 years ago
- 数据科学/人工智能比赛解决方案汇总☆530Updated 4 years ago
- 这是一个完整的,端到端的机器学习项目,非常适合有一定基础后拿来练习,以提高对完整机器学习项目的认识☆382Updated 6 years ago
- 深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系sc…☆166Updated 6 years ago
- [译] fast.ai 机器学习和深度学习中文笔记☆414Updated 3 years ago
- 《Python数据分析与挖掘实战》随书源码与数据☆280Updated 7 years ago
- 机器学习&深度学习资料笔记&基本算法实现&资源整理(ML / CV / NLP / DM...)☆226Updated last year
- 机器学习实战☆33Updated 5 years ago
- 数据挖掘入门介绍☆291Updated 6 years ago
- 吴恩达《深度学习》学习笔记(xmind)、代码视频讲解☆455Updated 5 years ago
- A feature engineering kit for each issue, to give you a deeper and deeper understanding of the work of feature engineering!☆673Updated 4 years ago
- 用python和sklearn两种方法实现李航《统计学习方法》中的算法☆338Updated 6 years ago
- Data&code for Machine-Learning-in-Action by Python3 | 《机器学习实战》数据与Python3源码☆419Updated 2 years ago
- 台湾大学林轩田机器学习笔记☆294Updated 4 years ago
- Datawhale第10期组队学习活动:《动手学深度学习》Pytorch版的练习代码☆89Updated 5 years ago
- ☆54Updated 6 years ago
- ☆48Updated last year
- 🤓 Important machine learning knowledge, each article deeply analyzes theoretical knowledge☆118Updated 5 years ago
- A collection of popular Data Science Competitions☆55Updated 6 years ago
- 机器学习算法 基于西瓜书以及《统计学习方法》,当然包括DL。☆292Updated 5 years ago
- XGBoost 中文文档☆569Updated last year
- 个人使用jupyter notebook整理的peter的《机器学习实战》代码,使其更有层次感,更加连贯,也加了一些自己的修改,以及注释☆299Updated 7 years ago
- [译] seaborn 0.9 中文文档☆168Updated last year
- ☆144Updated 6 years ago
- 教材对应的源码☆322Updated 6 years ago
- Describe past Kaggle solutions☆372Updated 5 years ago
- 机器学习初学者公众号作品☆2,230Updated 4 years ago
- python实现GBDT的回归、 二分类以及多分类,将算法流程详情进行展示解读并可视化,庖丁解牛地理解GBDT。Gradient Boosting Decision Trees regression, dichotomy and multi-classification ar…☆733Updated 5 years ago