Arecobaleno / recommand-system-book-projectLinks
codes from the book “推荐系统开发实战”
☆11Updated 5 years ago
Alternatives and similar repositories for recommand-system-book-project
Users that are interested in recommand-system-book-project are comparing it to the libraries listed below
Sorting:
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆58Updated 6 years ago
- 机器学习、深度学习基础知识. 推荐系统及nlp相关算法实现☆68Updated 3 years ago
- 推荐系统相关模型 包括召回和排序☆30Updated 5 years ago
- 2020翼支付风险用户识别 初赛、复赛AB榜Rank1☆57Updated 4 years ago
- ☆17Updated 6 years ago
- 2018科大讯飞营销算法大赛(冠军方案)☆95Updated 6 years ago
- 该工程是利用python3.6进行“特征提取+分类器”来实现美团评论的文本二分类问题。在特征提取部分提取了6种特征,分类器选择了python里面的包xgboost和lightGBM分别实现提升树和GBDT(梯度提升决策树)。☆94Updated 6 years ago
- 《推荐系统开发实战》代码及勘误☆60Updated 5 years ago
- 2018年甜橙金融杯大数据建模大赛-初赛第四-复赛线上11-决赛9-复现top1解决方案-【二分类,风控】☆75Updated 5 years ago
- 2017“达观杯”个性化推荐算法挑战赛-rank6☆43Updated 6 years ago
- 个性化推荐代码--初学者☆41Updated 5 years ago
- 广告点击率(CTR)预测经典模型 GBDT + LR 理解与实践(附数据 + 代码)☆93Updated 5 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆105Updated 5 years ago
- 推荐系统从入门到实战☆166Updated 3 years ago
- 看山杯 专家发现算法大赛 baseline 0.701741036192302(没有五折验证)☆37Updated 6 years ago
- 一些经典的个性化推荐算法的实现,从理论推导到实战☆68Updated 5 years ago
- rater, recommender systems. 推荐模型,包括:DeepFM,Wide&Deep,DIN,DeepWalk,Node2Vec等模型实现,开箱即用。☆45Updated 5 years ago
- KDD Cup 2020 Challenges for Modern E-Commerce Platform: Debiasing Full榜15 Half榜13☆67Updated 5 years ago
- 黑马头条推荐系统☆104Updated 6 years ago
- 商业预测(预测/计算广告/量化)☆45Updated 5 years ago
- 2nd Place Solution for SMP CUP 2016☆93Updated 8 years ago
- 天池大 数据比赛总结☆41Updated 7 years ago
- 2019中国高校计算机大赛——大数据挑战赛 第三名解决方案☆122Updated 5 years ago
- 此项目是《剑指offer》第二版里算法面试题的Python3实现版本,作为一本经典书籍,可以时常拿出来看一看、翻一翻、记一记。同时也是为了Python程序员能够更好的通过公司的技术面试,拿到心仪的offer。☆121Updated 4 years ago
- 1st place solution for the AntaiCup-International-E-commerce-Artificial-Intelligence-Challenge☆193Updated 6 years ago
- YouTube推荐算法☆112Updated 4 years ago
- 人工智能工程师直通车第三期 实战项目:广告点击率预测(CTR)。预测用户浏览给定网页的广告点击率,提高广告投放精准度。☆21Updated 7 years ago
- RecommenderSystems: from 0 to practice. 包括推荐系统实践和深度推荐系统两部分☆17Updated 4 years ago
- ☆66Updated 6 years ago
- 甜橙金融杯复赛第六方案☆39Updated 6 years ago