tushushu / itemcfLinks
Recommend system recall algorithms based on Pandas and Cython.
☆12Updated 2 years ago
Alternatives and similar repositories for itemcf
Users that are interested in itemcf are comparing it to the libraries listed below
Sorting:
- CTR prediction models based on spark(LR,FM、XGBoost、XGBoostLR、XGBoostFM)☆34Updated 5 years ago
- A machine learning library build on python, numpy and pandas.☆23Updated 7 years ago
- 推荐系统相关模型 包括召回和排序☆30Updated 5 years ago
- 零售电商客户流失模型,基于tensorflow,xgboost4j-spark,spark-ml实现LR,FM,GBDT,RF,进行模型效果对比,离线/在线部署方式总结☆67Updated 2 years ago
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆58Updated 6 years ago
- A tutorial of building tensorflow serving service from scratch☆89Updated 2 years ago
- Competition Review☆27Updated 5 years ago
- 个性化推荐代码--初 学者☆39Updated 5 years ago
- keras implementation about Deep Interest Network☆65Updated 6 years ago
- Tensorflow2.x implementations of CTR(LR、FM、FFM)☆72Updated 4 years ago
- 天池大数据比赛总结☆40Updated 7 years ago
- 短视频 youtube召回模型推荐,特征包括标题 tags id,tfserving docker部署☆22Updated 4 years ago
- 2018科大讯飞营销算法大赛(冠军方案)☆95Updated 6 years ago
- codes from the book “推荐系统开发实战”☆11Updated 5 years ago
- use xgboost and lr model for text classification. xgboost is used to be a feature transform for LR☆44Updated 7 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆104Updated 5 years ago
- LightCTR is a tensorflow 2.0 based, extensible toolbox for building CTR/CVR predicting models.☆103Updated last year
- 推荐算法学习☆39Updated 2 years ago
- 视频点击预测大赛-TOP1方案☆88Updated 3 years ago
- ☆17Updated 6 years ago
- ☆15Updated 5 years ago
- 图灵联邦视频点击预测大赛线上第三-【ctr, embedding, 穿越特征】☆62Updated 5 years ago
- A simple start for collaborative filtering.☆20Updated 4 years ago
- IJCAI-17 top1 solution☆65Updated 7 years ago
- My journey through kaggle, also as a reference for data cleaning, feature engineering & machine learning piplines☆32Updated 5 years ago
- 推荐算法python实现☆26Updated 5 years ago
- ☆14Updated 8 years ago
- xgboost在线预测☆30Updated 8 years ago
- Hybrid model of Gradient Boosting Trees and Logistic Regression (GBDT+LR) on Spark☆87Updated 6 years ago
- Implement node2vec algorithm using Spark 2 from: http://snap.stanford.edu/node2vec/☆10Updated 6 years ago