AceCoooool / ML-Andrew-NgLinks
Coursera Machine Learning (Andrew Ng) --- python code
☆126Updated 8 years ago
Alternatives and similar repositories for ML-Andrew-Ng
Users that are interested in ML-Andrew-Ng are comparing it to the libraries listed below
Sorting:
- 个人使用jupyter notebook整理的peter的《机器学习实战》代码,使其更有层次感,更加连贯,也加了一些自己的修改,以及注释☆301Updated 7 years ago
- coursera吴恩达机器学习课程作业自写Python版本+Matlab原版☆932Updated 7 years ago
- Data&code for Machine-Learning-in-Action by Python3 | 《机器学习实战》数据与Python3源码☆419Updated 2 years ago
- 机器学习-Coursera-吴恩达- python+Matlab代码实现☆194Updated 3 years ago
- deeplearning.ai-coursera,by Andrew Ng☆38Updated 7 years ago
- 吴恩达(Andrew Ng)在coursera的机器学习课程习题的python实现☆129Updated 6 years ago
- 吴恩达机器学习公开课作业中文版本以及Python实现☆79Updated 6 years ago
- 吴恩达机器学习算法Python实现,附详细的代码注释。☆83Updated 4 years ago
- ☆418Updated 4 years ago
- ☆280Updated 6 years ago
- 吴恩达《深度学习》学习笔记(xmind)、代码视频讲解☆457Updated 5 years ago
- 深度学习笔记☆805Updated 4 years ago
- 用python和sklearn两种方法实现李航《统计学习方法》中的算法☆338Updated 6 years ago
- 这是一个完整的,端到端的机器学习项目,非常适合有一定基础后拿来练习,以提高对完整机器学习项目的认识☆387Updated 6 years ago
- 微专业: 吴恩达 深度学习工程师 作业☆204Updated 7 years ago
- 周志华《机器学习》☆93Updated 7 years ago
- Coursera Machine Learning (Andrew Ng) implements in Python☆10Updated 2 years ago
- Homework of Andrew Ng's "Machine Learning" course in Coursera☆116Updated 7 years ago
- 周志华《机器学习》阅读笔记☆410Updated 3 years ago
- 周志华-机器学习☆277Updated 5 years ago
- 《机器学习实战》的python3源码☆1,329Updated 4 years ago
- Machine Learning code in Python3.x. (机器学习实战 py3代码整理)Some notes about the practices:(for reference only)☆269Updated 7 years ago
- This something about deep learning on Coursera by Andrew Ng☆246Updated 6 years ago
- Python programming assignments for Machine Learning by Prof. Andrew Ng in Coursera☆1,418Updated 4 years ago
- Notes and Assignments for Andrew Ng's Machine Learning - Python3 code☆94Updated 4 years ago
- 机器学习&深度学习资料笔记&基本算法实现&资源整理(ML / CV / NLP / DM...)☆226Updated last year
- Python实现经典分类回归、关联分析、聚类以及推荐算法等☆215Updated 6 years ago
- Andrew Ng Deeplearning.ai Course Notes☆84Updated 6 years ago
- 深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、 深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系sc…☆168Updated 6 years ago
- Kaggle Kernel for House Prices competition https://www.kaggle.com/massquantity/all-you-need-is-pca-lb-0-11421-top-4☆165Updated 6 years ago