AceCoooool / ML-Andrew-Ng
Coursera Machine Learning (Andrew Ng) --- python code
☆126Updated 8 years ago
Alternatives and similar repositories for ML-Andrew-Ng
Users that are interested in ML-Andrew-Ng are comparing it to the libraries listed below
Sorting:
- 个人使用jupyter notebook整理的peter的《机器学习实战》代码,使其更有层次感,更加连贯,也加了一些自己的修改,以及注释☆299Updated 7 years ago
- coursera吴恩达机器学习课程作业自写Python版本+Matlab原版☆919Updated 7 years ago
- 机器学习-Coursera-吴恩达- python+Matlab代码实现☆193Updated 2 years ago
- Data&code for Machine-Learning-in-Action by Python3 | 《机器学习实战》数据与Python3源码☆419Updated 2 years ago
- 深度学习笔记☆801Updated 4 years ago
- deeplearning.ai-coursera,by Andrew Ng☆38Updated 6 years ago
- 吴恩达机器学习算法Python实现,附详细的代码注释。☆83Updated 4 years ago
- 吴恩达《深度学习》学习笔记(xmind)、代码视频讲解☆457Updated 5 years ago
- Implementation of algorithms introduced in CS229.☆385Updated 2 years ago
- 微专业: 吴恩达 深度学习工程师 作业☆204Updated 7 years ago
- 吴恩达(Andrew Ng)在coursera的机器学习课程习题的python实现☆128Updated 5 years ago
- 周志华《机器学习》☆93Updated 7 years ago
- ☆418Updated 4 years ago
- 机器学习算法 基于西瓜书以及《统计学习方法》,当然包括DL。☆292Updated 5 years ago
- 用python和sklearn两种方法实现李航《统计学习方法》中的算法☆337Updated 6 years ago
- NTU ML2017 Spring and Fall Homework Hung-yi_Li 李宏毅老师 机器学习课程作业☆873Updated 6 years ago
- ☆280Updated 6 years ago
- 一文彻底搞懂BP算法:原理推导+数据演示+项目实战☆187Updated 5 years ago
- ☆274Updated 6 years ago
- 这是一个完整的,端到端的机器学习项目,非常适合有一定基础后拿来练习,以提高对完整机器学习项目的认识☆384Updated 6 years ago
- 统计学习方法训练营课程作业及答案,视频笔记在线阅读地址:https://relph1119.github.io/statistical-learning-method-camp☆196Updated 2 years ago
- 吴恩达机器学习coursera课程,学习代码(2017年秋) The Stanford Coursera course on MachineLearning with Andrew Ng☆248Updated 5 years ago
- Stanford CS231n assignment in 2019 spring☆391Updated 5 years ago
- 吴恩达机器学习公开课作业中文版本以及Python实现☆79Updated 5 years ago
- 《机器学习实战》的python3源码☆1,323Updated 4 years ago
- 吴恩达《深度学习》系列课程笔记及代码 | Notes in Chinese for Andrew Ng Deep Learning Course☆1,021Updated 3 years ago
- A repository for recording the machine learning code☆96Updated 2 years ago
- 斯坦福机器学习完整 python 实现☆605Updated 7 years ago
- 深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者批评指正。 未完待续............ 如有意合作,联系sc…☆166Updated 6 years ago
- Python programming assignments for Machine Learning by Prof. Andrew Ng in Coursera☆1,413Updated 4 years ago