zhbink / 2017-IndustryBigDataLinks
2017工业大数据 风机叶片预测
☆59Updated 4 years ago
Alternatives and similar repositories for 2017-IndustryBigData
Users that are interested in 2017-IndustryBigData are comparing it to the libraries listed below
Sorting:
- [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)☆201Updated 5 years ago
- ☆141Updated 7 years ago
- 2017工业大数据创新竞赛/风机叶片结冰预测大赛☆48Updated 6 years ago
- 刀具剩余寿命预测☆72Updated 5 years ago
- Deep learning in PHM,Deep learning in fault diagnosis,Deep learning in remaining useful life prediction☆458Updated 4 years ago
- 轴承故障检测 训练赛第30名代码☆133Updated 6 years ago
- ☆172Updated 4 years ago
- 由于CSDN博客里面不能直接上代码链接,涉嫌营销推广,因此建一个github仓库用于整理这些代码链接☆153Updated 2 years ago
- ☆279Updated 7 years ago
- ☆94Updated 4 years ago
- Dataset that was used during the IEEE PHM 2012 Data Challenge, built by the FEMTO-ST Institute☆148Updated 5 years ago
- 基于深度学习机械设备故障诊断模型☆171Updated 7 years ago
- Using LSTM to predict Remaining Useful Life of CMAPSS Dataset☆90Updated 6 years ago
- 故障诊断方面的论文阅读☆16Updated 6 years ago
- 使用TensorFlow建立简单的轴承故障诊断模型☆104Updated 7 years ago
- 基于一维卷积神经网络(1D-CNN)的多元时间序列分类☆78Updated 5 years ago
- 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。☆130Updated 4 years ago
- Dataset that was used during the PHM IEEE 2012 Data Challenge, built by the FEMTO-ST Institute☆139Updated 7 years ago
- ☆86Updated 3 years ago
- Remaining Useful Life Prediction Using RNN/LSTM/GRU Neural Networks☆144Updated 3 years ago
- fault detection in wind turbines☆15Updated 5 years ago
- 1D CNN for CWRU rolling bearings dataset☆42Updated 7 years ago
- Code used in Thesis "Convolutional Recurrent Neural Networks for Remaining Useful Life Prediction in Mechanical Systems".☆83Updated 6 years ago
- for wind turbine phm☆18Updated 7 years ago
- 包含一些比较常见的数据挖掘竞赛或者项目的源码☆129Updated 6 years ago
- ☆212Updated 5 years ago
- ☆62Updated 6 years ago
- Implementation of TPA-LSTM in TensorFlow2☆17Updated 3 years ago
- to prediction the remain useful life of bearing based on 2012 PHM data☆296Updated 4 years ago
- 完整的航空发动机一维卷积神经网络训练模型☆61Updated 6 years ago