zhbink / 2017-IndustryBigData
2017工业大数据 风机叶片预测
☆54Updated 4 years ago
Alternatives and similar repositories for 2017-IndustryBigData
Users that are interested in 2017-IndustryBigData are comparing it to the libraries listed below
Sorting:
- 2017工业大数据创新竞赛/风机叶片结冰预测大赛☆48Updated 6 years ago
- [深度应用]·DC竞赛轴承故障检测开源Baseline(基于Keras1D卷积 val_acc:0.99780)☆186Updated 5 years ago
- Using LSTM to predict Remaining Useful Life of CMAPSS Dataset☆88Updated 6 years ago
- 刀具剩余寿命预测☆71Updated 5 years ago
- ☆137Updated 7 years ago
- 1D CNN for CWRU rolling bearings dataset☆39Updated 6 years ago
- Code used in Thesis "Convolutional Recurrent Neural Networks for Remaining Useful Life Prediction in Mechanical Systems".☆83Updated 6 years ago
- fault detection in wind turbines☆16Updated 4 years ago
- 轴承故障检测 训练赛第30名代码☆128Updated 6 years ago
- Remaining Useful Life Prediction Using RNN/LSTM/GRU Neural Networks☆138Updated 3 years ago
- ☆93Updated 4 years ago
- 故障诊断方面的论文阅读☆16Updated 5 years ago
- 基于无监督和迁移学习的旋转机械故障诊断☆32Updated 5 years ago
- One model for RUL and fault prognostic prediction on XJTU bearing dataset☆92Updated 5 years ago
- 采用一种 包含加权水平可见图(WHVG)的图卷积网络(GCN),对采样的轴承震动时间序列数据分析,进行滚动轴承故障诊断。其中,对HVG中两节点的边,以节点距离的倒数作为权重进行加权,以削弱噪声节点对其他距离较远节点的影响。☆41Updated 2 years ago
- 完整的航空发动机一维卷积神经网络训练模型☆59Updated 6 years ago
- for wind turbine phm☆16Updated 6 years ago
- 毕设研究课题:根据轴承的振动序列数据来诊断轴承故障。☆124Updated 4 years ago
- Spark - Bearing RUL Predictions☆19Updated 8 years ago
- ☆60Updated 5 years ago
- Data set for Wind Turbine High-Speed Bearing Prognosis example in Predictive Maintenance Toolbox☆50Updated 3 years ago
- : Faulty and healthy gear box Data sets need to be analyzed in detail. Here, we created this dataset for those who do research in wind tu…☆50Updated 7 years ago
- given run to failure measurements of various sensors on a sample of similar jet engines, estimate the remaining useful life (RUL) of a ne…☆65Updated 5 years ago
- 包含一些比较常见的数据挖掘竞赛或者项目的源码☆126Updated 5 years ago
- Dataset that was used during the PHM IEEE 2012 Data Challenge, built by the FEMTO-ST Institute☆135Updated 6 years ago
- ☆82Updated 2 years ago
- Fault Diagnosis of Tennessee Eastman Chemical process using Neural Networks☆40Updated 6 years ago
- 使用TensorFlow建立简单的轴承故障诊断模型☆102Updated 7 years ago
- ☆166Updated 3 years ago
- 基于深度学习机械设备故障诊断模型☆166Updated 7 years ago