yuhuiaws / ML-studyLinks
自己整理了一些ML入门的知识,以及ML项目中的一些经验总结分享
☆310Updated 10 months ago
Alternatives and similar repositories for ML-study
Users that are interested in ML-study are comparing it to the libraries listed below
Sorting:
- ☆46Updated 2 years ago
- A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend.☆538Updated 2 weeks ago
- 《互联网大厂推荐算法实战》资料库☆288Updated 2 years ago
- 该仓库主要记录 推荐系统 算法工程师相关的面试题☆571Updated last year
- 推荐系统综述☆518Updated 2 years ago
- An easy-to-use framework for large scale recommendation algorithms.☆183Updated last week
- 原理解析及代码实战,推荐算法也可以很简单 🔥 想要系统的学习推荐算法的小伙伴,欢迎 Star 或者 Fork 到自己仓库进行学习🚀 有任何疑问欢迎提 Issues,也可加文末的联系方式向我询问!☆698Updated 3 years ago
- CTR模型代码和学习笔记总结☆390Updated 3 years ago
- 推荐系统学习笔记☆208Updated 2 years ago
- 推荐系统竞赛TOP开源解决方案汇总。☆258Updated 3 years ago
- A framework for large scale recommendation algorithms.☆2,061Updated last month
- 【浅梦学习笔记】文章汇总:包含 排序&CXR预估,召回匹配,用户画像&特征工程,推荐搜索综合 计算广告,大数据,图算法,NLP&CV,求职面试 等内容☆1,723Updated 2 years ago
- 计算广告机制策略相关材料整理(A collection of research and application papers about Strategy in Internet advertising.)☆167Updated last year
- CTR prediction model based on spark(LR, GBDT, DNN)☆915Updated 5 years ago
- 推荐、广告工业界经典以及最前沿的论文、资料集合/ Must-read Papers on Recommendation System and CTR Prediction☆1,012Updated last year
- ☆163Updated 5 years ago
- TensorFlow implementation of multi-task learning architectures, incl. MMoE & PLE, on wechat dataset☆201Updated 3 years ago
- A Deep Learning Recommender System☆2,602Updated last year
- some useful papers and blogs for people who are interested in online advertising☆73Updated 2 years ago
- 优质的推荐算法资源汇总☆151Updated 3 years ago
- ☆151Updated 5 years ago
- 推荐系统/计算广告相关仓库,个人博客https://jesse-csj.github.io/☆289Updated 4 years ago
- embedx 是基于 c++ 开发的、完全自研的分布式 embedding 训练和推理框架。它目前支持 图模型、深度排序、召回模型和图与排序、图与召回的联合训练模型等☆311Updated last year
- DeepRec is a high-performance recommendation deep learning framework based on TensorFlow. It is hosted in incubation in LF AI & Data Foun…☆1,110Updated 5 months ago
- 该仓库记录搜索推荐算法工程师的必备面试知识点+paper☆47Updated 3 years ago
- 推荐系统从入门到实战☆167Updated 3 years ago
- 练习下用pytorch来复现下经典的推荐系统模型, 如MF, FM, DeepConn, MMOE, PLE, DeepFM, NFM, DCN, AFM, AutoInt, ONN, FiBiNET, DCN-v2, AFN, DCAP等☆625Updated 3 years ago
- 推荐算法实战(Recommend algorithm)☆205Updated 2 weeks ago
- 一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM, xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)☆262Updated 2 months ago
- 在常规推荐系统算法和系统双优化的范式下,一线公司针对单个任务或单个业务的效果挖掘几乎达到极限。从2019年我们开始关注多种信息的萃取融合,提出了OneRec算法,希望通过平台或外部各种各样的信息来进行知识集成,打破数据孤岛,极大扩充推荐的“Extra World Knowl…☆153Updated last week