GuocaiL / nlp_corpus
本人项目进行中搜集的数据集,包含原始数据和经过处理后的数据,项目持续更新。
☆113Updated 4 years ago
Alternatives and similar repositories for nlp_corpus:
Users that are interested in nlp_corpus are comparing it to the libraries listed below
- 基于词汇信息融合的中文NER模型☆167Updated 3 years ago
- 全局指针统一处理嵌套与非嵌套NER☆253Updated 4 years ago
- TPlinker for NER 中文/英文命名实体识别☆124Updated 3 years ago
- NLP关系抽取:序列标注、层叠式指针网络、Multi-head Selection、Deep Biaffine Attention☆99Updated 3 years ago
- 基于Pytorch的命名实体识别框架,支持LSTM+CRF、Bert+CRF、RoBerta+CRF等框架☆86Updated 2 years ago
- ccks2020 NER competitions☆117Updated 4 years ago
- GlobalPointer的优化版/NER实体识别☆120Updated 3 years ago
- CMeEE/CBLUE/NER实体识别☆129Updated 3 years ago
- 基于GlobalPointer的实体/关系/事件抽取☆146Updated 3 years ago
- 全局指针统一处理嵌套与非嵌套NER的Pytorch实现☆391Updated 2 years ago
- GPLinker_pytorch☆81Updated 3 years ago
- Tplinker注释,中文数据集适配版本☆59Updated 4 years ago
- 中文NER的那些事儿☆318Updated last year
- [Unofficial] Predict code for AAAI 2022 paper: Unified Named Entity Recognition as Word-Word Relation Classification☆53Updated 2 years ago
- 使用torch整合两种经典的指针NER抽取范式,分别是SpanBert和苏神的GlobalPointer,简单加了些tricks,配置后一键运行☆132Updated 11 months ago
- 利用指针网络进行信息抽取,包含命名实体识别、关系抽取、事件抽取。☆123Updated 2 years ago
- OneRel在中文关系抽取中的使用☆119Updated last year
- CMeIE/CBLUE/CHIP/实体关系抽取/SPO抽取☆228Updated 2 years ago
- 限定领域的三元组抽取的一次尝试,本文将会介绍笔者在2019语言与智能技术竞赛的三元组抽取比赛方面的一次尝试。☆134Updated 2 years ago
- 哈工大bert上fine turning ,中文人物关系抽取任务准确率0.97☆117Updated 5 years ago
- 基于SpanBert的中文指代消解,pytorch实现☆97Updated 2 years ago
- 超长文本分类(大于1000字);文档级/篇章级文本分类;主要是解决长距离依赖问题☆130Updated 3 years ago
- Reimplement CasRel model in PyTorch.使用PyTorch对吉林大学CasRel模型进行复现,并在百度关系抽取数据集上训练测试。☆191Updated 2 years ago
- 实体识别和关系抽取的联合模型☆124Updated 6 years ago
- Knowledge Graph☆172Updated 2 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆137Updated 2 years ago
- Reject complicated operations for incorporating lexicon for Chinese NER.☆435Updated 3 years ago
- experiments of some semantic matching models and comparison of experimental results.☆161Updated last year
- 本NER项目包含多个中文数据集,模型采用BiLSTM+CRF、BERT+Softmax、BERT+Cascade、BERT+WOL等,最后用TFServing进行模型部署,线上推理和线下推理。☆80Updated 3 years ago
- ☆458Updated 4 years ago