xueyongtu / ML-ACLinks
☆29Updated last year
Alternatives and similar repositories for ML-AC
Users that are interested in ML-AC are comparing it to the libraries listed below
Sorting:
- An end-to-end stock factors mining neural network framework.☆44Updated 2 years ago
- High frequency factors based on order and trade data.☆63Updated last year
- 本文通过gplearn模型,结合遗传算法中的遗传规划方法生成因子。这里因子生成基于simple-backtest中的简单回测系统,主要针对股指期货操作。☆134Updated last year
- 基于万矿平台,对alpha101因子进行测试并构造多因子策略☆92Updated 6 years ago
- 因子回测框架☆133Updated 2 years ago
- Barra Multifactor Model☆148Updated 5 years ago
- Reimplementation of Autoencoder Asset Pricing Models (GKX, 2019)☆123Updated last month
- ☆60Updated 2 years ago
- 升级后的gplearn, 支持包含时序和截面参数的自定义函数,例如均线☆61Updated last year
- 通过遗传算法、强化学习来自动选择高频因子☆23Updated 2 years ago
- 因子构建、单因子测试☆72Updated 4 years ago
- 复现华泰证券《强化学习初探与DQN择时》研报中的DQN模型与效果☆35Updated 3 years ago
- Reimplementation of Paper: (Re-)Imag(in)ing Price Trends☆63Updated 3 weeks ago
- Mining technical factors based on symbolic regression via genetic algorithm☆195Updated 2 years ago
- Stock factor mining with CNN and GRU.☆66Updated 2 years ago
- A risk evaluation program that follows BARRA's CNE6 and USE4 risk model to predict the risk and distribution of factors in a portfolio. C…☆69Updated 4 years ago
- Barra CNE6 因子构建☆318Updated 5 years ago
- convertible bond pricing project based on Monte Carlo simulation☆14Updated 2 years ago
- Enhance the gplearn package to support precise three-dimensional structured dimension genetic programming (GP), with a particular focus …☆35Updated last year
- An internship project: Implement Barra model to take risk or style factor attribution based on multi-factor model.☆65Updated 7 years ago
- PyTorch implementation of FactorVAE☆81Updated 10 months ago
- Machine Learning-Driven Quantamental Investing☆139Updated 5 years ago
- 基于基因表达式规划算法的因子挖掘☆33Updated 4 years ago
- 计算Barra因子及其收益率☆12Updated 3 years ago
- Barra-Multiple-factor-risk-model☆144Updated 8 years ago
- 多因子模型相关☆22Updated 4 years ago
- 改写了gplearn源码,原有的gplearn会把数据转为numpy,丢失了datetime和stockcode的原始信息。很难做截面的因子ic、ir分析,所以改动了相应的源码,使之可以做因子的截面ic分析。另外增加了时序函数和并行化框架ray的支持。☆20Updated last year
- pseudocode and algorithms for the paper "Alpha$^2$: Discovering Logical Formulaic Alphas using Deep Reinforcement Learning"☆156Updated last year
- 基于华泰研报对原alpha101代码进行简化和拓展☆46Updated 5 years ago
- Official implementation for AAAI2025: AlphaForge: A Framework to Mine and Dynamically Combine Formulaic Alpha Factors☆286Updated last year