webup / langchain-in-action
《LangChain 实战》配套实验示例代码
☆32Updated 10 months ago
Alternatives and similar repositories for langchain-in-action:
Users that are interested in langchain-in-action are comparing it to the libraries listed below
- AGI 内外部分享材料合集☆56Updated 2 months ago
- ☆164Updated 3 weeks ago
- langchain中文网是langchain的中文文档☆168Updated 3 months ago
- ☆264Updated last year
- LangChain结合了大型语言模型、知识库和计算逻辑,可以用于快速开发强大的AI应用。这个仓库包含了我对LangChain的学习和实践经验,包括教程和代码案例。让我们一起探索LangChain的可能性,共同推动人工智能领域的进步!☆140Updated 6 months ago
- 基于 Langchain,快速集成GLM-4 AllTools 功能的插件☆45Updated 6 months ago
- 添加🚀流式 Web 服务到 GraphRAG,兼容 OpenAI SDK,支持可访问的实体链接🔗,支持建议问题,兼容本地嵌入模型,修复诸多问题。Add streaming web server to GraphRAG, compatible with OpenAI SD…☆223Updated this week
- ☆155Updated 11 months ago
- ☆246Updated last year
- The tool is used for building and driving workflows specifically tailored for AI initiatives. It can be used to construct AI agents.☆134Updated 6 months ago
- ☆300Updated this week
- Agentica: Effortlessly Build Intelligent, Reflective, and Collaborative Multimodal AI Agents! 轻松构建智能、具备反思能力、可协作的多模态AI Agent。☆115Updated 2 weeks ago
- 本项目主要实现使用FastAPI后端框架+CrewAI实现AI Agent复杂工作流。代码实现CrewAI的Flows功能,并支持Flow运行中间结果进行持久化存储和查询(MySQL),支持多Flow并行(Celery是一个强大的异步任务队列/作业队列库)。☆54Updated 2 months ago
- langchain 工具,流程设计组件,服务,代理以及相关学习文档的合集(agent,service,tutorials,flow-design)☆109Updated 7 months ago
- 基于RAG的私有知识库问答系统☆110Updated last month
- 基于ReAct手搓一个Agent Demo☆111Updated 8 months ago
- 企业级RAG系统从入门到精通☆291Updated last week
- langchain学习笔记,包含langchain源码解读、langchain中使用中文模型、langchain实例等。☆182Updated last year
- 异步图书 《大模型应用开发 动手做AI Agent》 - 这是一些非常简单的入门示例,重在引导新手入门,目前LLM开发领域发展很快,本书只是一个提纲挈领。更多的示例和代码大家可以去OpenAI Cookbook, LangChain Example中去挖掘。☆249Updated 3 months ago
- An easy-to-use framework for modular RAG☆307Updated this week
- Large Language Model in Action☆133Updated 7 months ago
- A LLM RAG system runs on your laptop. 大模型检索增强生成系统,可以轻松部署在笔记本电脑上,实现本地知识库智能问答。☆115Updated last month
- RAG-QA-Generator 是一个用于检索增强生成(RAG)系统的自动化知识库构建与管理工具。该工具通过读取文档数据,利用大规模语言模型生成高质量的问答对(QA对),并将这些数据插入数据库中,实现RAG系统知识库的自动化构建和管理。☆78Updated 3 weeks ago
- ☆58Updated 2 months ago
- Easy, fast, and cheap pretrain,finetune, serving for everyone☆272Updated 2 weeks ago
- ☆69Updated last year
- ☆64Updated 7 months ago
- dify's rag patch module☆92Updated 2 weeks ago
- Intelligent data apps and assets with LLMs☆125Updated 4 months ago
- ⛓ LangChain 入门指南,配套吴恩达老师deeplearning.ai课程 😎复现语言:Python、NodeJs、Golang☆136Updated last year