tz28 / Price-prediction-and-recommendation-of-second-hand-housing-in-Shanghai
基于postgresql+机器学习库MadLib的上海地区二手房价格预测及推荐)
☆25Updated 6 years ago
Alternatives and similar repositories for Price-prediction-and-recommendation-of-second-hand-housing-in-Shanghai:
Users that are interested in Price-prediction-and-recommendation-of-second-hand-housing-in-Shanghai are comparing it to the libraries listed below
- 北京二手房房价分析和预测☆53Updated 6 years ago
- 情感分析三分类☆29Updated 8 months ago
- 数据挖掘常用算法:关联分析Apriori算法,数据分类决策树算法,数据聚类K-means算法☆24Updated 5 years ago
- 京东评论情感分析模型,主要包括1、数据获取及探索性分析;2、文本预处理、文本分词、文本向量化、特征提取、☆79Updated 5 years ago
- 某电商手机评论的文本挖掘初体验 功能板块:数据预处理、LDA模型获取特征词、情感极性判断 与程度计算、回归模型预测销量排序☆116Updated 6 years ago
- 智慧物流算法大赛简介: 根据包括货值、路程和油价等字段的数据集,对每趟货物运送的运价进行回归预测。 本项目为我的参赛代码,分为四个主要的部分:1.数据预处理;2.特征工程;3.建模调参训练;4.数据可视化。 最终获得了大赛的二等奖。☆37Updated 6 years ago
- 情感分析系统,用于分析用户评论是积极还是消极。其中使用了逻辑回归函数、决策树、支持向量机、神经网络等不同的模型进行训练☆34Updated 6 years ago
- 基于深度学习的中文评论情感分类和智能客服研究与实现。主要是酒店和书店的评论情感分析(二分类+九分类),可以判定积极和消极,对于消极评论,还可以判断其具体类别,比如物流不好或者服务差等等。☆47Updated 4 years ago
- 朴素贝叶斯实现的文本分类(新闻分类)☆62Updated 9 years ago
- 基于pytorch进行文本多分类,主要模型为双向LSTM,预测准确率83%☆42Updated 4 years ago
- 2017 DF,CCF大数据与计算智能大赛——“中印对峙事件舆情分析 ”赛题全网数据☆25Updated 6 years ago
- 本项目是采用Python语言结合机器学习中的常用算法来对微博传播过程中的转发进行预测。☆12Updated 6 years ago
- 2020年第八届泰迪杯数据挖掘C题“智慧政务文本挖掘”特等奖作品(论文与代码)☆64Updated 4 years ago
- 基于深度学习(LSTM)的情感分析(京东商城数据)☆170Updated 4 years ago
- 近年来,随着微信、微博、市长信箱、阳光热线等网络问政平台逐步成为政府了解民意、汇聚民智、凝聚民气的重要渠道,各类社情民意相关的文本数据量不断攀升,给以往主要依靠人工来进行留言划分和热点整理的相关部门的工作带来了极大挑战。同时,随着大数据技术的发展,建立基于自然语言处理技术的…☆33Updated 4 years ago
- 软件工程课程设计项目/Lab409:基于词典方法和机基于器学习方法的中文情感倾向分析(Web)☆121Updated 7 years ago
- 基于情感字典的情感分析模型☆40Updated 7 years ago
- 本项目主要是利用LSTM来对中文文本进行情感分类,包含四个类别(愤怒,焦虑,抑郁,伤感)☆54Updated 5 years ago
- 练手项目:Comment of Interest 电商文本评论数据挖掘 (爬虫 + 观点抽取 + 句子级和观点级情感分析)☆101Updated 4 years ago
- 本软件包括对于百度外卖平台的原始评论采集、评论情感计算并分类展示、以及对于用户打分、服务评分等结构化数据进行可视化三个主要功能模块。本软件的主要技术特征在于改造和使用了网络爬虫,来为本软件提供实时数据采集的能力,并将评论情感极性分析和用户打分相结合,在首先考虑用户打分的情况…☆45Updated 4 years ago
- 本科毕业设计的内容,社交媒体文本中的情感分析,运用了情感字典和机器学习的方法☆57Updated 7 years ago
- 依据香港中文大学设计的规则系统,先用小样本评论建立初始关键词库,再结合18种句式逐条匹配评论,能够快速准确地识别评论对象及情感极性。经多次迭代优化关键词库后,达到较高准确率的基础上,使用Tableau进一步分析数据,识别出客户集中关注的商品属性、普遍好评差评的商品属性;通过…☆53Updated 7 years ago
- 基于Word2Vec+SVM对电商的评论数据进行情感分析☆135Updated 6 years ago
- 以京东评论作为数据集,使用常见的机器学习算法如KNN、SVM、逻辑回归、贝叶斯、xgboost等等算法进行分类。使用深度学习中的CNN、RNN、CNN和RNN连接、Bi-GRU、bert模型进行分类。使用fastnlp的框架搭建文本分类。☆31Updated 4 years ago
- 使用CNN网络对用户评论进行情感分析☆24Updated 7 years ago
- 电商评论情感分析平台☆14Updated last year
- 通过python爬虫获取人民网、新浪等网站新闻作为训练集,基于BERT构建新闻文本分类模型,并结合node.js + vue完成了一个可视化界面。☆42Updated 3 years ago
- 豆瓣Top250影评爬虫(用于情感分析语料)☆21Updated 2 years ago
- 一个基于SnowNLP的新浪微博评论情感分析工具☆49Updated 7 years ago
- 文本热点挖掘,基于DBSCAN聚类模型,对文本的热点事件进行挖掘☆43Updated 4 years ago