sunkx109 / My-Torch-ExtensionLinks
A minimalist and extensible PyTorch extension for implementing custom backend operators in PyTorch.
☆33Updated last year
Alternatives and similar repositories for My-Torch-Extension
Users that are interested in My-Torch-Extension are comparing it to the libraries listed below
Sorting:
- learning how CUDA works☆264Updated 3 months ago
- Examples of CUDA implementations by Cutlass CuTe☆190Updated 4 months ago
- ☆134Updated last year
- Implement Flash Attention using Cute.☆85Updated 5 months ago
- ☆121Updated 6 months ago
- ☆73Updated 3 weeks ago
- ☆64Updated 5 months ago
- A light llama-like llm inference framework based on the triton kernel.☆122Updated this week
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆92Updated last week
- Implement custom operators in PyTorch with cuda/c++☆62Updated 2 years ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆57Updated 6 months ago
- 📚FFPA(Split-D): Extend FlashAttention with Split-D for large headdim, O(1) GPU SRAM complexity, 1.8x~3x↑🎉 faster than SDPA EA.☆184Updated 3 weeks ago
- flash attention tutorial written in python, triton, cuda, cutlass☆370Updated 3 weeks ago
- A collection of memory efficient attention operators implemented in the Triton language.☆271Updated last year
- A CUDA tutorial to make people learn CUDA program from 0☆233Updated 10 months ago
- Puzzles for learning Triton, play it with minimal environment configuration!☆334Updated 6 months ago
- Tutorials for writing high-performance GPU operators in AI frameworks.☆130Updated last year
- A Easy-to-understand TensorOp Matmul Tutorial☆360Updated 8 months ago
- ☆22Updated 2 months ago
- A tutorial for CUDA&PyTorch☆142Updated 4 months ago
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆37Updated 3 months ago
- ☆131Updated last month
- ☆96Updated 8 months ago
- some hpc project for learning☆22Updated 9 months ago
- hands on model tuning with TVM and profile it on a Mac M1, x86 CPU, and GTX-1080 GPU.☆48Updated last year
- ☆148Updated 4 months ago
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆68Updated 9 months ago
- A simple high performance CUDA GEMM implementation.☆374Updated last year
- ☆23Updated 3 weeks ago
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆41Updated 9 months ago