sunkx109 / My-Torch-ExtensionLinks
A minimalist and extensible PyTorch extension for implementing custom backend operators in PyTorch.
☆33Updated last year
Alternatives and similar repositories for My-Torch-Extension
Users that are interested in My-Torch-Extension are comparing it to the libraries listed below
Sorting:
- learning how CUDA works☆319Updated 6 months ago
- flash attention tutorial written in python, triton, cuda, cutlass☆420Updated 4 months ago
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆106Updated 2 months ago
- Examples of CUDA implementations by Cutlass CuTe☆233Updated 2 months ago
- ☆138Updated last year
- A light llama-like llm inference framework based on the triton kernel.☆152Updated last month
- ☆35Updated 4 months ago
- Puzzles for learning Triton, play it with minimal environment configuration!☆508Updated 9 months ago
- A CUDA tutorial to make people learn CUDA program from 0☆251Updated last year
- ☆69Updated 8 months ago
- ☆143Updated 2 months ago
- Implement Flash Attention using Cute.☆95Updated 9 months ago
- 使用 CUDA C++ 实现的 llama 模型推理框架☆62Updated 10 months ago
- 🤖FFPA: Extend FlashAttention-2 with Split-D, ~O(1) SRAM complexity for large headdim, 1.8x~3x↑🎉 vs SDPA EA.☆218Updated last month
- ☆134Updated 9 months ago
- A collection of memory efficient attention operators implemented in the Triton language.☆278Updated last year
- ☆104Updated 4 months ago
- A Easy-to-understand TensorOp Matmul Tutorial☆378Updated last year
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆47Updated last year
- Implement custom operators in PyTorch with cuda/c++☆71Updated 2 years ago
- Tutorials for writing high-performance GPU operators in AI frameworks.☆131Updated 2 years ago
- how to learn PyTorch and OneFlow☆453Updated last year
- ☆147Updated 6 months ago
- ☆255Updated this week
- some hpc project for learning☆24Updated last year
- A simple high performance CUDA GEMM implementation.☆406Updated last year
- [ICML 2025] Official PyTorch implementation of "FlatQuant: Flatness Matters for LLM Quantization"☆162Updated 2 months ago
- 注释的nano_vllm仓库,并且完成了MiniCPM4的适配以及注册新模型的功能☆75Updated last month
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆75Updated last year
- hands on model tuning with TVM and profile it on a Mac M1, x86 CPU, and GTX-1080 GPU.☆50Updated 2 years ago