sunkx109 / My-Torch-ExtensionLinks
A minimalist and extensible PyTorch extension for implementing custom backend operators in PyTorch.
☆33Updated last year
Alternatives and similar repositories for My-Torch-Extension
Users that are interested in My-Torch-Extension are comparing it to the libraries listed below
Sorting:
- learning how CUDA works☆311Updated 6 months ago
- flash attention tutorial written in python, triton, cuda, cutlass☆415Updated 3 months ago
- Examples of CUDA implementations by Cutlass CuTe☆222Updated 2 months ago
- ☆143Updated last month
- ☆138Updated last year
- llm theoretical performance analysis tools and support params, flops, memory and latency analysis.☆104Updated last month
- A light llama-like llm inference framework based on the triton kernel.☆148Updated 3 weeks ago
- Implement Flash Attention using Cute.☆95Updated 8 months ago
- Implement custom operators in PyTorch with cuda/c++☆70Updated 2 years ago
- A collection of memory efficient attention operators implemented in the Triton language.☆278Updated last year
- 使用 cutlass 实现 flash-attention 精简版,具有教学意义☆46Updated last year
- Puzzles for learning Triton, play it with minimal environment configuration!☆497Updated 8 months ago
- ☆68Updated 7 months ago
- A CUDA tutorial to make people learn CUDA program from 0☆248Updated last year
- ☆131Updated 8 months ago
- ☆101Updated 3 months ago
- ☆35Updated 3 months ago
- 使用 cutlass 仓库在 ada 架构上实现 fp8 的 flash attention☆74Updated last year
- 🤖FFPA: Extend FlashAttention-2 with Split-D, ~O(1) SRAM complexity for large headdim, 1.8x~3x↑🎉 vs SDPA EA.☆211Updated 3 weeks ago
- A Easy-to-understand TensorOp Matmul Tutorial☆376Updated 11 months ago
- 📚200+ Tensor/CUDA Cores Kernels, ⚡️flash-attn-mma, ⚡️hgemm with WMMA, MMA and CuTe (98%~100% TFLOPS of cuBLAS/FA2 🎉🎉).☆42Updated 4 months ago
- [ICML 2025] Official PyTorch implementation of "FlatQuant: Flatness Matters for LLM Quantization"☆156Updated last month
- 使用 CUDA C++ 实现的 llama 模型推理框架☆60Updated 9 months ago
- ☆25Updated 3 weeks ago
- Performance of the C++ interface of flash attention and flash attention v2 in large language model (LLM) inference scenarios.☆40Updated 6 months ago
- ☆146Updated 5 months ago
- ☆42Updated last year
- A simple high performance CUDA GEMM implementation.☆398Updated last year
- ☆172Updated 2 years ago
- hands on model tuning with TVM and profile it on a Mac M1, x86 CPU, and GTX-1080 GPU.☆49Updated 2 years ago