solidglue / Deep_Learning_TensorFlow2_ExamplesLinks
深度学习TensorFlow2入门指南。Deep Learning TensorFlow2 API and Examples with Python3 and Jupyter Notebook.
☆102Updated last year
Alternatives and similar repositories for Deep_Learning_TensorFlow2_Examples
Users that are interested in Deep_Learning_TensorFlow2_Examples are comparing it to the libraries listed below
Sorting:
- 机器学习Sklearn入门指南。Machine Learning Sklearn API and Examples with Python3 and Jupyter Notebook.☆118Updated last year
- Large scale recommender system inference Microservices and APIs (Dubbo 、gRPC and REST ) with Golang.☆118Updated last year
- YouTube推荐系统深度学习召回排序算法, Deep Neural Networks for YouTube Recommendations. YouTubeDNN.☆133Updated last year
- 推荐系统入门指南,全面介绍了工业级推荐系统的理论知识(王树森推荐系统公开课-基于小红书的场景讲解工业界真实的推荐系统),如何基于TensorFlow2训练模型,如何实现高性能、高并发、高可用的Golang推理微服务。Comprehensively introduced th…☆665Updated 8 months ago
- kaggle比赛—otto多目标推荐系统源代码,单模型分数0.594,LB排名30左右☆68Updated 2 years ago
- 机器学习,深度学习八股☆130Updated 7 months ago
- 零基础入门推荐系统 - 新闻推荐 Top2☆298Updated 4 years ago
- 零基础入门推荐系统 - 新闻推荐 Top2☆27Updated 7 months ago
- Solution to kaggle competition OTTO – Multi-Objective Recommender System: https://www.kaggle.com/competitions/otto-recommender-system☆19Updated 2 years ago
- 天池大赛——新闻推荐场景下的用户行为预测挑战赛,SOLO赛,B榜排名5/5338☆56Updated 4 years ago
- deepmatch模型使用天池新闻推荐大赛数据☆14Updated last year
- 🔥🔥🔥从零使用pytorch构建电影推荐系统,基于MovieLens数据集,实现了多种召回排序相关模型:DSSM、CF、MF、DeepWalk、Item2Vec,LR、Wide&Deep、DeepFM、DCNv1、DCNv2、DIN、MMoE、PLE。欢迎大家进行st…☆30Updated this week
- 推荐/广告/搜索领域工业界经典以及最前沿论文集合。A collection of industry classics and cutting-edge papers in the field of recommendation/advertising/search.☆1,970Updated 3 weeks ago
- 搜广推学习笔记:王树森“推荐系统”课程☆147Updated 11 months ago
- https://tianchi.aliyun.com/competition/entrance/531842/introduction☆39Updated 3 years ago
- 推荐系统八股160问☆166Updated 7 months ago
- 优质的推荐算法资源汇总☆167Updated 3 years ago
- ☆3,637Updated last year
- 基于天池新闻推荐赛数据集实现的新闻推荐☆23Updated 10 months ago
- ☆76Updated last year
- 移动推荐算法,以阿里巴巴移动电商平台的真实用户-商品行为数据为基础,同时提供移动时代特有的位置信息,希望你能够挖掘数据背后丰富的内涵,为移动用户在合适的时间、合适的地点精准推荐合适的内容。☆20Updated 11 months ago
- 主流推荐系统Rank算法的实现☆271Updated 2 years ago
- 该仓库尝试整理推荐系统领域的一些经典算法模型☆2,078Updated 2 years ago
- A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend.☆596Updated this week
- 《互联网大厂推荐算法实战》资料库☆297Updated 2 years ago
- 用pytorch 方法复现了二十多个经典的推荐算法论文,其中包含排序论文和推荐召回论文,并在demo里面选了一个召回模型和排序模型的运行示例。☆81Updated 2 years ago
- 利用大模型赋能智能推荐,通过案例讲解大模型推荐算法原理,并且给出代码实现。☆97Updated 8 months ago
- 推荐算法实战(Recommend algorithm)☆220Updated 4 months ago
- 代码随想录刷题思路总结(含代码)☆27Updated 11 months ago
- 搜索、推荐、广告、用增等工业界实践文章收集(来源:知乎、Datafuntalk、技术公众号)☆3,914Updated last week