nicolaivicol / otto-recommenderLinks
Solution to kaggle competition OTTO – Multi-Objective Recommender System: https://www.kaggle.com/competitions/otto-recommender-system
☆21Updated 2 years ago
Alternatives and similar repositories for otto-recommender
Users that are interested in otto-recommender are comparing it to the libraries listed below
Sorting:
- kaggle比赛—otto多目标推荐系统源代码,单模 型分数0.594,LB排名30左右☆75Updated 2 years ago
- 3rd Place Solution for the OTTO – Multi-Objective Recommender System Competition☆156Updated 2 years ago
- 推荐系统八股160问☆212Updated 8 months ago
- 机器学习,深度学习八股☆176Updated 8 months ago
- kaggle Otto Recommender system code, single model LB0.596, about rank 22☆32Updated 2 years ago
- deepmatch模型使用天池新闻推荐大赛数据☆16Updated last year
- 零基础入门推荐系统 - 新闻推荐 Top2☆341Updated 4 years ago
- 用pytorch 方法复现了二十多个经典的推荐算法论文,其中包含排序论文和推荐召回论文,并在demo里面选了一个召回模型和排序模型的运行示例。☆84Updated 2 years ago
- PyTorch(1.6+) implementation of https://github.com/kang205/SASRec☆528Updated 2 months ago
- 基于王喆老师的深度学习推荐系统书籍,主要用pytorch实现了里面涉及到的算法,有很少数量的算法是用tf2.0实现的。在这个过程中也参考很多大佬的复现代码,希望自己能持续学习 多多去实现。☆51Updated 2 years ago
- 天池大赛——新闻推荐场景下的用户行为预测挑战赛,SOLO赛,B榜排名5/5338☆66Updated 4 years ago
- 推荐系统论文算法实现,包括序列推荐,多任务学习,元学习等。 Recommendation system papers implementations, including sequence recommendation, multi-task learning, met…☆249Updated 2 years ago
- ☆12Updated last year
- 深度学习与推荐系统学习,理论结合代码更香。☆155Updated 3 years ago
- https://tianchi.aliyun.com/competition/entrance/531842/introduction☆44Updated 3 years ago
- 代码随想录刷题思路总结(含代码)☆35Updated last year
- 利用大模型赋能智能推荐,通过案例讲解大模型推荐算法原理,并且给出代码实现。☆98Updated 9 months ago
- 天池学习赛 零基础入门推荐系统 正式赛 第三名(0.2592) 开源代码☆60Updated 4 years ago
- ☆107Updated 2 years ago
- GRID: Generative Recommendation with Semantic IDs☆495Updated 2 months ago
- ☆51Updated last year
- 零基础入门推荐系统 - 新闻推荐 Top2☆35Updated 9 months ago
- A curated list of awesome resources about multimodal recommender systems.☆444Updated 2 months ago
- Official implementation of the GRU4Rec algorithm in PyTorch☆75Updated 2 years ago
- ☆70Updated last month
- [Pytorch] Generative retrieval model using semantic IDs from "Recommender Systems with Generative Retrieval"☆657Updated 3 months ago
- 🔥🔥🔥从零使用pytorch构建电影推荐系统,基于MovieLens数据集,实现 了多种召回排序相关模型:DSSM、CF、MF、DeepWalk、Item2Vec,LR、Wide&Deep、DeepFM、DCNv1、DCNv2、DIN、MMoE、PLE。欢迎大家进行st…☆38Updated last month
- 搜广推学习笔记:王树森“推荐系统”课程☆170Updated last year
- ☆77Updated last year
- SASRec: Self-Attentive Sequential Recommendation☆923Updated 2 years ago