sedelmeyer / wasserstein-auto-encoderLinks
A brief tutorial on the Wasserstein auto-encoder
☆85Updated 6 years ago
Alternatives and similar repositories for wasserstein-auto-encoder
Users that are interested in wasserstein-auto-encoder are comparing it to the libraries listed below
Sorting:
- Gaussian Process Prior Variational Autoencoder☆86Updated 6 years ago
- Code for Sliced Gromov-Wasserstein☆69Updated 5 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆102Updated 7 years ago
- ☆125Updated 2 years ago
- Ladder Variational Autoencoders (LVAE) in PyTorch☆92Updated 5 years ago
- Variational auto encoder in pytorch☆57Updated 6 years ago
- ☆91Updated 6 years ago
- code for "Continuous Hierarchical Representations with Poincaré Variational Auto-Encoders".☆129Updated 2 years ago
- Official pytorch implementation of the paper "Bayesian Meta-Learning for the Few-Shot Setting via Deep Kernels" (NeurIPS 2020)☆206Updated 3 years ago
- Reproducing the paper "Variational Sparse Coding" for the ICLR 2019 Reproducibility Challenge☆61Updated 2 years ago
- ☆149Updated 3 years ago
- Learning Autoencoders with Relational Regularization☆46Updated 5 years ago
- Pytorch implementation of Hyperspherical Variational Auto-Encoders☆378Updated 5 years ago
- ☆66Updated 6 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- Pytorch implementation of VAEs for heterogeneous likelihoods.☆43Updated 3 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- Pytorch implementations of generative models: VQVAE2, AIR, DRAW, InfoGAN, DCGAN, SSVAE☆93Updated 4 years ago
- Disentanglement library for PyTorch☆281Updated 3 years ago
- Another Domain Adaptation library, aimed at researchers.☆104Updated 7 months ago
- Implementation of the Gromov-Wasserstein distance to the setting of Unbalanced Optimal Transport☆45Updated 2 years ago
- Pytorch implementation of Neural Processes for functions and images☆233Updated 3 years ago
- Play time!☆197Updated last year
- Nonlinear Independent Components Estimation (Dinh et al, 2014) in PyTorch.☆123Updated 7 years ago
- Implementation of "Learning latent subspaces in variational autoencoders"☆20Updated 5 years ago
- ☆89Updated 4 years ago
- Code for "Learning with minibatch Wasserstein: asymptotic and gradient properties".☆13Updated 4 years ago
- Reimplementation of Variational Inference with Normalizing Flows (https://arxiv.org/abs/1505.05770)☆238Updated 7 years ago
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆29Updated 6 years ago
- ☆91Updated 2 years ago