HongtengXu / Relational-AutoEncodersLinks
Learning Autoencoders with Relational Regularization
☆46Updated 4 years ago
Alternatives and similar repositories for Relational-AutoEncoders
Users that are interested in Relational-AutoEncoders are comparing it to the libraries listed below
Sorting:
- Code for Sliced Gromov-Wasserstein☆69Updated 5 years ago
- Contains the code relative to the paper Partial Gromov-Wasserstein with Applications on Positive-Unlabeled Learning https://arxiv.org/abs…☆20Updated 5 years ago
- Stochastic algorithms for computing Regularized Optimal Transport☆58Updated 7 years ago
- Code for Optimal Transport for structured data with application on graphs☆102Updated 2 years ago
- Learning Generative Models across Incomparable Spaces (ICML 2019)☆27Updated 5 years ago
- Implementation of the Gromov-Wasserstein distance to the setting of Unbalanced Optimal Transport☆45Updated 2 years ago
- the reproduce of Variational Deep Embedding : A Generative Approach to Clustering Requirements by pytorch☆137Updated 2 years ago
- A PyTorch Implementation of VaDE(https://arxiv.org/pdf/1611.05148.pdf)☆39Updated 4 years ago
- Gromov-Wasserstein Learning for Graph Matching and Node Embedding☆72Updated 6 years ago
- Gromov-Wasserstein Factorization Models for Graph Clustering (AAAI-20)☆31Updated 2 years ago
- Mixed-curvature Variational Autoencoders (ICLR 2020)☆65Updated 4 years ago
- Implementation of the Sliced Wasserstein Autoencoder using PyTorch☆103Updated 6 years ago
- ☆68Updated 6 years ago
- Linxiao Yang, Ngai-Man Cheung, Jiaying Li, and Jun Fang, "Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embeddi…☆52Updated 5 years ago
- Gaussian Process Prior Variational Autoencoder☆85Updated 6 years ago
- Original implementation of Separated Paths for Local and Global Information framework (SPLIT) in TensorFlow 2.☆19Updated 2 years ago
- Anonymized code for ICLR 2019 submission "Understanding and Improving Interpolation in Autoencoders via an Adversarial Regularizer"☆20Updated 6 years ago
- A Pytorch implementation of missing data imputation using optimal transport.☆101Updated 4 years ago
- Implementation of 'DIVA: Domain Invariant Variational Autoencoders'☆104Updated 5 years ago
- Disentangled gEnerative cAusal Representation (DEAR)☆61Updated 2 years ago
- Code for "Learning with minibatch Wasserstein: asymptotic and gradient properties".☆13Updated 4 years ago
- Source code for the ICML2019 paper "Subspace Robust Wasserstein Distances"☆29Updated 6 years ago
- Official PyTorch implementation of 🏁 MFCVAE 🏁: "Multi-Facet Clustering Variatonal Autoencoders (MFCVAE)" (NeurIPS 2021). A class of var…☆40Updated 2 years ago
- MPVAE: Multivariate Probit Variational AutoEncoder for Multi-Label Classification☆31Updated 11 months ago
- Code for Neural Manifold Clustering and Embedding☆61Updated 3 years ago
- PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"☆75Updated 5 years ago
- implements optimal transport algorithms in pytorch☆100Updated 3 years ago
- Implementation of Multi-View Information Bottleneck☆132Updated 5 years ago
- Official source code repository for the ICML 2021 paper "Hierarchical VAEs Know What They Don't Know"☆30Updated 3 years ago
- A brief tutorial on the Wasserstein auto-encoder☆83Updated 6 years ago