ryanluoli1 / Machine-Learning-Books-and-PapersLinks
A collection of the books and papers on data science and machine learning.
☆57Updated 2 years ago
Alternatives and similar repositories for Machine-Learning-Books-and-Papers
Users that are interested in Machine-Learning-Books-and-Papers are comparing it to the libraries listed below
Sorting:
- ☆74Updated last year
- 收集大语言模型的学习路径和各种最佳实践☆307Updated last year
- ☆454Updated 2 months ago
- ☆248Updated 3 years ago
- 搜广推学习笔记:王树森“推荐系统”课程☆134Updated 10 months ago
- ☆121Updated 3 years ago
- LLM大模型(重点)以及搜广推等 AI 算法中手写的面试题,(非 LeetCode),比如 Self-Attention, AUC等,一般比 LeetCode 更考察一个人的综合能力,又更贴近业务和基础知识一点☆380Updated 9 months ago
- 算法岗笔试面试大全,励志做算法届的《五年高考,三年模拟》!☆621Updated 6 months ago
- Learning LLM Implementaion and Theory for Practical Landing☆184Updated 9 months ago
- 博客配套视频链接: https://space.bilibili.com/383551518?spm_id_from=333.1007.0.0 b 站直接看 配套 github 链接:https://github.com/nickchen121/Pre-trainin…☆456Updated 3 years ago
- 🐳 LeetCode 算法笔记:面试、刷题、学算法。在线阅读地址:https://datawhalechina.github.io/leetcode-notes/☆955Updated last month
- 大模型基础学习和面试八股文☆164Updated last year
- llm相关内容,包括:基础知识、八股文、面经、经典论文☆211Updated last year
- 该仓库记录搜索推荐算法工程师的必备面试知识点+paper☆293Updated last year
- 《动手学深度学习》习题解答,在线阅读地址如下:☆511Updated last year
- ☆204Updated 4 months ago
- 大模型算法岗面试题(含答案):常见问题和概念解析 "大模型面试题"、"算法岗面试"、"面试常见问题"、"大模型算法面试"、"大模型应用基础"☆1,325Updated 2 months ago
- 《机器学习》(西瓜书)代码实战☆893Updated 5 months ago
- 集成学习思维导图☆20Updated 2 years ago
- 自然语言处理学习笔记:机器学习及深度学习原理和示例,基于 Tensorflow 和 PyTorch 框架,Transformer、BERT、ALBERT等最新预训练模型及源代码详解,及基于预训练模型进行各种自然语言处理任务。模型部署☆435Updated 5 years ago
- ☆209Updated 4 months ago
- 机器学习,深度学习八股☆111Updated 6 months ago
- 本项目分享各种类型的推荐算法及实战代码,小白也可轻松掌握☆27Updated 2 years ago
- 零基础入门推荐系统 - 新闻推荐 Top2☆286Updated 4 years ago
- Datawhale NLP 面筋☆218Updated 4 years ago
- 阿里云天池大赛赛题解析☆149Updated 4 years ago
- 最完整的AI算法面试题目仓库,1000道,25个类目☆1,286Updated 2 years ago
- Learning materials of Transformer, including my code, XMind, PDF and so on☆456Updated 4 years ago
- 整理算法岗面试八股☆51Updated 8 months ago
- 一份通俗易懂的搜索、推荐、广告算法教程,同时不缺乏趣味和深度☆35Updated last month