ruczhangxy / bayes_error_rate_vs_aucLinks
☆12Updated 9 years ago
Alternatives and similar repositories for bayes_error_rate_vs_auc
Users that are interested in bayes_error_rate_vs_auc are comparing it to the libraries listed below
Sorting:
- use xgboost and lr model for text classification. xgboost is used to be a feature transform for LR☆44Updated 8 years ago
- ☆27Updated 8 years ago
- Tensorflow2.x implementations of CTR(LR、FM、FFM)☆72Updated 4 years ago
- recommendation system with Youtube Deep Net☆84Updated 7 years ago
- 2018第二届易观算法大赛☆85Updated 6 years ago
- 快手活跃用户预测——lctry队解决方案☆51Updated 7 years ago
- 2018年腾讯广告算法大赛Rank10代码:深度部分☆67Updated 7 years ago
- Tencent Social Ads 2017 contest rank 20☆158Updated 8 years ago
- 算法相关的各种论文和slides☆41Updated 7 years ago
- IJCAI-18 阿里妈妈搜索广告转化预测初赛方案☆74Updated 7 years ago
- ☆27Updated 7 years ago
- xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems☆129Updated 6 years ago
- 2017 Global Data Challenge Hosted by JD Finance / JDD—2017京东金融全球数据探索者大赛 金融信贷需求预测☆79Updated 7 years ago
- Multi-thread implementation of Factorization Machines with FTRL for multi-class classification problem which uses softmax as hypothesis.☆71Updated 4 years ago
- ☆37Updated 5 years ago
- Sharing of the second-place solution in Tianchi OGeek competition.☆22Updated last year
- Implement Wide & Deep algorithm by using NumPy☆155Updated 7 years ago
- Hybrid model of Gradient Boosting Trees and Logistic Regression (GBDT+LR) on Spark☆88Updated 7 years ago
- 京东借贷需求预测☆76Updated 8 years ago
- IJCAI18-阿里妈妈广告转化率预测代码(Rank29)☆99Updated 7 years ago
- Wide and Deep Learning(Wide&ResDNN) for Kaggle Criteo Dataset in tensorflow☆82Updated 7 years ago
- 招商银行信用卡中心校园大赛:消费金融场景下的用户购买预测 Rank 3rd☆72Updated 7 years ago
- CCF2016 - TNT_000二等奖作品☆87Updated 9 years ago
- code of scattered practices when studying "machine-learning".☆93Updated 6 years ago
- ☆65Updated 6 years ago
- 高效决策树算法系列笔记☆231Updated 6 years ago
- 用户预订售卖房型概率预测--top1☆142Updated 8 years ago
- 推荐系统相关模型 包括召回和排序☆30Updated 5 years ago
- IJCAI-17 top1 solution☆65Updated 7 years ago
- 零售电商客户流失模型,基于tensorflow,xgboost4j-spark,spark-ml实现LR,FM,GBDT,RF,进行模型效果对比,离线/在线部署方式总结☆67Updated 2 years ago