rjk-git / bert2transformer_on_NMTLinks
BERT微调在机器翻译上的应用,哎哟,效果贼好。
☆49Updated 4 years ago
Alternatives and similar repositories for bert2transformer_on_NMT
Users that are interested in bert2transformer_on_NMT are comparing it to the libraries listed below
Sorting:
- 微调预训练语言模型,解决多标签分类任务(可加载BERT、Roberta、Bert-wwm以及albert等知名开源tf格式的模型)☆141Updated 4 years ago
- 迭代膨胀卷积命名实体抽取☆45Updated 5 years ago
- 简单高效的Bert中文文本分类模型开发和部署☆26Updated 6 years ago
- 使用bert做领域分类、意图识别和槽位填充任务☆76Updated 5 years ago
- 这是使用pytoch 实现的长文本分类器☆45Updated 5 years ago
- Pytorch进行长文本分类。这里用到的网络有:FastText、TextCNN、TextRNN、TextRCNN、Transformer☆48Updated 5 years ago
- 中国中文信息学会社会媒体处理专业委员会举办的2019届中文人机对话之自然语言理解竞赛☆74Updated 5 years ago
- Pytorch-BERT-CRF-NER;Chinese-Named-Entity-Recognition☆46Updated 4 years ago
- Bert预训练模型fine-tune计算文本相似度☆105Updated 2 years ago
- Bert分类,语义相似度,获取句向量。☆64Updated 3 months ago
- ☆38Updated 5 years ago
- WordMultiSenseDisambiguation, chinese multi-wordsense disambiguation based on online bake knowledge base and semantic embedding similarit…☆128Updated 6 years ago
- BERT预训练模型字 向量提取工具☆52Updated 5 years ago
- 简版文本对话/问答系统☆34Updated 5 years ago
- cw2vec implementation in pytorch☆17Updated 6 years ago
- NER(命名实体识别)中文语料,一站式获取☆128Updated 5 years ago
- 基于Pytorch+BERT+CRF的NLP序列标注模型,目前包括分词,词性标注,命名实体识别等☆61Updated 2 years ago
- 本项目是NLP领域一些任务的基准模型实现,包括文本分类、命名实体识别、实体关系抽取、NL2SQL、CKBQA以及BERT的各种下游任务应用。☆47Updated 4 years ago
- 实体链接demo☆65Updated 6 years ago
- 中文无监督SimCSE Pytorch实现☆134Updated 3 years ago
- implementation SlotGated SLU model for keras☆34Updated 4 years ago
- A full-process dialogue system that can be deployed online☆98Updated 3 years ago
- Named Recognition Entity based on BERT and CRF 基于BERT+CRF的中文命名实体识别☆184Updated 2 years ago
- 2019百度语言与智能技术竞赛信息抽取赛代5名代码☆69Updated 5 years ago
- NLP杂货铺,python实现各种算法/工具,辅助算法理解/应用☆154Updated 4 years ago
- 基于轻量级的albert实现albert+BiLstm+CRF☆89Updated 2 years ago
- 中国法研杯-司法人工智能挑战赛(CAIL2018-2020)☆89Updated 2 years ago
- 开课吧&后 厂理工学院_百度NLP项目2:试题数据集多标签文本分类 Models: FastText TextCNN GCN BERT et al.☆47Updated 5 years ago
- 本NER项目包含多个中文数据集,模型采用BiLSTM+CRF、BERT+Softmax、BERT+Cascade、BERT+WOL等,最后用TFServing进行模型部署,线上推理和线下推理。☆80Updated 3 years ago
- 基于Pytorch + BERT的抽取式机器阅读理解☆20Updated 2 years ago