quqixun / RL-Python-PytorchLinks
《强化学习-原理与Python实现》的Pytorch实现。
☆62Updated 4 years ago
Alternatives and similar repositories for RL-Python-Pytorch
Users that are interested in RL-Python-Pytorch are comparing it to the libraries listed below
Sorting:
- An easier PyTorch deep reinforcement learning library.☆226Updated 6 months ago
- Pytorch for Deep Reinforcement Learning☆248Updated 5 years ago
- 强化学习-中文笔记&资源-以python实例为主-由浅入深☆104Updated 4 years ago
- basic algorithms of reinforcement learning☆212Updated last year
- 国立台湾大学李宏毅老师讲解的深度强化学习学习笔记☆146Updated 5 years ago
- ☆66Updated last year
- 白话强化学习与PyTorch的学习笔记☆35Updated 5 years ago
- [动手学强化学习]系列,基于pytorch。☆55Updated 4 years ago
- Pytorch realization of multiple Deep Reinforcement Learning alogrithms(DQN,DDPG,TD3,PPO,A3C...) with openai gym☆57Updated 3 years ago
- RL-code for beginners. Enjoying!☆115Updated 5 years ago
- 多智能体强化学习☆99Updated 6 years ago
- PyTorch implementation of DQN, AC, ACER, A2C, A3C, PG, DDPG, TRPO, PPO, SAC, TD3 and ....☆53Updated 5 years ago
- Master Reinforcement and Deep Reinforcement Learning using OpenAI Gym and TensorFlow☆28Updated 5 years ago
- ☆165Updated last year
- 真-极简强化学习(基于torch的强化学习框架pfrl)☆81Updated 3 years ago
- 多智能体学习库☆20Updated 3 years ago
- Tutorial for Reinforcement Learning☆186Updated 3 years ago
- 动手学强化学习代码☆58Updated last year
- RL algorithms☆142Updated 4 years ago
- rl-papers☆47Updated 2 years ago
- 主要存储Datawhale组队学习中“强化学习”方向的资料。☆34Updated 4 years ago
- 这是一个学习强化学习基础原理的仓库,主要包括了《深入浅出强化学习原理入门》书中一些例子和课后作业的代码☆262Updated 6 years ago
- TD3 in Pytorch☆34Updated 3 years ago
- Solve BipedalWalkerHardcore-v2 with TD3☆90Updated 2 years ago
- Reinforcement Learning algorithms and use-cases, including DQN, PG, A3C, PPO etc. and RLHF, AlphaZero implementations. Designed for clari…☆32Updated last year
- 强化学习算法库,包含了目前主流的强化学习算法(Value based and Policy based)的代码,代码都经过调试并可以运行☆89Updated last year
- Simple Reinforcement learning tutorials☆15Updated 5 years ago
- 天授中文文档☆58Updated 6 months ago
- 一些利用pytorch编程实现的强化学习例子☆36Updated 6 years ago
- 《深度强化学习:原理与实践》,Code of the book <Deep Reinforcement Learning: Principles and Practices>☆186Updated 6 years ago