nianxw / ccks2020_pytorch_baselineLinks
本项目是CCKS2020实体链指比赛baseline(pytorch)
☆19Updated 5 years ago
Alternatives and similar repositories for ccks2020_pytorch_baseline
Users that are interested in ccks2020_pytorch_baseline are comparing it to the libraries listed below
Sorting:
- ☆29Updated 6 years ago
- 2020语言与智能技术竞赛:事件抽取任务 -- 联合抽取baseline☆55Updated 5 years ago
- 使用BERT解决lic2019机器阅读理解☆90Updated 6 years ago
- 天池-新冠疫情相似句对判定大赛 Rank8☆52Updated 5 years ago
- ccks2021事件抽取比赛☆30Updated 4 years ago
- 2020语言与智能技术竞赛:面向推荐的对话任务☆52Updated 4 years ago
- Code for the competition "CCKS 2020: 面向中文短文本的实体链指任务" , see https://www.biendata.xyz/competition/ccks_2020_el/☆14Updated 4 years ago
- lic2020关系抽取比赛,使用Pytorch实现苏神的模型。☆102Updated 4 years ago
- CCKS 2019 Task 2: Entity Recognition and Linking☆94Updated 6 years ago
- 2020语言与智能技术竞赛:事件抽取任务方案代码☆28Updated 2 years ago
- 这是使用pytoch 实现的长文本分类器☆46Updated 6 years ago
- CCKS2020面向金融领域的小样本跨类迁移事件抽取baseline☆56Updated 2 years ago
- 2021海华AI挑战赛·中文阅读理解·技术组☆21Updated 3 years ago
- 2019 语言与智能技术竞赛-知识驱动对话 B榜第5名源码和模型☆27Updated 6 years ago
- 2020语言与智能技术竞赛:关系抽取任务(https://aistudio.baidu.com/aistudio/competition/detail/31?lang=zh_CN)☆24Updated 5 years ago
- 2019百度语言与智 能技术竞赛信息抽取赛代5名代码☆69Updated 6 years ago
- ☆13Updated 5 years ago
- 机器检索阅读联合学习,莱斯杯:全国第二届“军事智能机器阅读”挑战赛 rank6 方案☆129Updated 4 years ago
- 基于“Seq2Seq+前缀树”的知识图谱问答☆71Updated 3 years ago
- ccks金融事件主体抽取☆72Updated 4 years ago
- Chinese Named Entity Recognition Using Neural Network☆30Updated 2 years ago
- 多轮对话槽填充☆20Updated 6 years ago
- 千言多技能对话,包含闲聊、知识对话、推荐对话☆28Updated 3 years ago
- 全球人工智能技术创新大赛-赛道三:小布助手对话短文本语义匹配☆38Updated 4 years ago
- IPRE: a Dataset for Inter-Personal Relationship Extraction☆94Updated 6 years ago
- ☆23Updated 6 years ago
- The code for "A Unified MRC Framework for Named Entity Recognition"☆33Updated 5 years ago
- 2019 语言与智能技术竞赛-知识驱动对话 B榜第5名源码和模型☆25Updated 5 years ago
- DescriptionPairsExtraction, entity and it's description pairs extract program based on Albert and data back-annotation. 基于Albert与结构化数据回标思…☆20Updated 3 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 4 years ago