mpj1234 / yolov3-pytorch-simpleUI
在up主Bubbliiiing的YOLOv3基础上增加pyqt5的UI展示
☆11Updated 2 years ago
Alternatives and similar repositories for yolov3-pytorch-simpleUI:
Users that are interested in yolov3-pytorch-simpleUI are comparing it to the libraries listed below
- 本仓库主要包含了针对目标检测数据集的增强手段和源码:图像的旋转,镜像,裁剪,亮度/对比度的变换等☆131Updated 4 years ago
- I tried to apply the CAM algorithm to YOLOv4 and it worked.☆61Updated 3 years ago
- 实验室的一个病虫害检测项目,在SSD基础上进行一系列改进!SSD Improvements!☆26Updated 2 years ago
- 基于YOLOv5的卫星图像目标检测demo | A demo for satellite imagery object detection based on YOLOv5☆214Updated 4 years ago
- ☆76Updated 3 years ago
- 以Swin Transformer作为骨干网络的YoloX目标检测项目☆79Updated 2 years ago
- Support data enhancement when there are few data sets(支持数据集较少的情况进行数据增强,包含随机的多种变化)☆41Updated 2 years ago
- 这是一个retinanet-pytorch的源码,可以用于训练自己的模型。☆179Updated last year
- YOLOV5 小目标检测修改版☆183Updated 3 years ago
- 这里面存放了一些目标检测算法的数据增强方法。如mosaic、mixup。☆157Updated 2 years ago
- Yolov5 with transformers☆22Updated 3 years ago
- ImgEnhance For Obejct Detection tool☆133Updated 5 years ago
- ☆27Updated 4 years ago
- 这个是一个在SSD的基础上用于生成绘制mAP代码 所用的txt的例子。(目的是生成txt)☆129Updated 3 years ago
- 布匹缺陷识别练习赛☆45Updated 3 years ago
- 规范化管理labelme数据集并生成coco数据集☆85Updated 4 years ago
- 将DOTA数据集制作成VOC格式,包含类别选择,图片分割,标签抓取,txt2xml,重命名,索引制作等六个步骤。☆17Updated 3 years ago
- ☆138Updated 2 years ago
- the modify for shufflenets: shufflenet_v2_csp;shufflenet_v2_k5;shufflenet_v2_liteconv;shufflenet_v2_se_attention;shufflenet_v2_sk_attenti…☆66Updated 4 years ago
- ☆68Updated 3 years ago
- 里面会保存许多优秀的卷积神经网络结构,这些结构可以帮助我们更好的设计网络。☆142Updated 3 years ago
- ☆106Updated 2 years ago
- DOTA database training with yolo | 基于DOTA数据集的yolo训练☆62Updated 5 years ago
- Yolov5 distillation training | Yolov5知识蒸馏训练,支持训练自己的数据☆210Updated 2 years ago
- 适用于目标检测VOC格式的数据增强工具包,包含各种像素级增广方式和形变增广,如:rotate、crop、rotation、flip、tile、滑动窗口、mosaic等;数据格式转换:coco_2_voc、xml_for_u_yolo等☆20Updated 4 years ago
- Trans DOTA OBB format(poly format) to YOLO format.☆202Updated 3 years ago
- 目标检测☆104Updated 4 years ago
- 一个简单方便的目标检测框架(PyTorch环境可直接运行,不需要cuda编译),支持Faster_RCNN、Cascade_RCNN、Yolo系列、SSD等经典网络。☆266Updated 4 months ago
- 目标检测数据集制作:VOC,COCO,YOLO等常用数据集格式的制作和互相转换脚本☆434Updated 3 years ago
- 对VOC数据集进行数据增强☆23Updated 2 years ago