liushaoweihua / Keras-Bert-KbqaLinks
Keras solution of simple Knowledge-Based QA task with Pretrained Language Model: supporting BERT/RoBERTa/ALBERT
☆21Updated 2 years ago
Alternatives and similar repositories for Keras-Bert-Kbqa
Users that are interested in Keras-Bert-Kbqa are comparing it to the libraries listed below
Sorting:
- 限定领域的三元组抽取的一次尝试,本文将会介绍笔者在2019语言与智能技术竞赛的三元组抽取比赛方面的一次尝试。☆133Updated 2 years ago
- lic2020关系抽取比赛,使用Pytorch实现苏神的模型。☆101Updated 4 years ago
- baidu aistudio event extraction competition☆224Updated 2 years ago
- 机器检索阅读联合学习,莱斯杯:全国第二届“军事智能机器阅读”挑战赛 rank6 方案☆128Updated 4 years ago
- 2020语言与智能技术竞赛:关系抽取任务☆65Updated 4 years ago
- A Chinese KBQA dataset with SPARQL annotations.☆144Updated 5 years ago
- albert + lstm + crf实体识别,pytorch实现。识别的主要实体是人名、地名、机构名和时间。albert + lstm + crf (named entity recognition)☆136Updated 2 years ago
- 2019百度语言与智能技术竞赛信息抽取赛代5名代码☆69Updated 6 years ago
- Keras solution of Chinese NER task using BiLSTM-CRF/BiGRU-CRF/IDCNN-CRF model with Pretrained Language Model: supporting BERT/RoBERTa/ALB…☆12Updated 2 years ago
- SEBERTNets:一种面向金融领域的事件主体抽取方法☆193Updated 3 years ago
- 实体链接demo☆65Updated 6 years ago
- 一个关于百度2019语言与智能技术竞赛信息抽取 (http://lic2019.ccf.org.cn/kg) 模型, 模型采用BERT+CNN。DEMO地址 https://github.com/Wangpeiyi9979/InformationExtractionDem…☆187Updated 6 years ago
- BERT + reproduce "Joint entity recognition and relation extraction as a multi-head selection problem" for Chinese and English IE☆142Updated 11 months ago
- 迭代膨胀卷积命名实体抽取☆45Updated 5 years ago
- some baselines for lic2020 (http://lic2020.cipsc.org.cn/)☆218Updated 5 years ago
- ccks_2019_百度实体链接技术比赛_第一名解决方案☆57Updated 5 years ago
- 中国法研杯CAIL2019要素抽取任务第三名方案分享☆138Updated 4 years ago
- 事件抽取相关算法汇总☆125Updated 5 years ago
- CCKS 2020: 基于本体的金融知识图谱自动化构建技术评测☆89Updated 2 years ago
- Relation Extraction 中文关系提取☆73Updated 6 years ago
- 实现了一下multi-head-selection联合关系实体抽取☆30Updated 6 years ago
- 2020语言与智能技术竞赛:事件抽取任务 -- 联合抽取baseline☆55Updated 5 years ago
- Named Recognition Entity based on BERT and CRF 基于BERT+CRF的中文命名实体识别☆184Updated 2 years ago
- CCKS 2019 Task 2: Entity Recognition and Linking☆94Updated 5 years ago
- Multiple-Relations-Extraction-Only-Look-Once. Just look at the sentence once and extract the multiple pairs of entities and their corresp…☆347Updated 5 years ago
- 端到端的基于知识图谱的问答系统,分为实体识别和关系分类两部,在BERT基础上做多任务联合训练。☆30Updated 5 years ago
- NLP关系抽取:序列标注、层叠式指针网络、Multi-head Selection、Deep Biaffine Attention☆101Updated 4 years ago
- 本项目是NLP领域一些任务的基准模型实现,包括文本分类、命名实体识别、实体关系抽取、NL2SQL、CKBQA以及BERT的各种下游任务应用。☆47Updated 4 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 4 years ago
- 法研杯2019 阅读理解赛道 top3☆150Updated last year