hrwleo / multi-Label-TextClassificationLinks
多标签文本分类
☆31Updated 3 years ago
Alternatives and similar repositories for multi-Label-TextClassification
Users that are interested in multi-Label-TextClassification are comparing it to the libraries listed below
Sorting:
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆177Updated 3 years ago
- 句子匹配模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆99Updated 2 years ago
- ☆87Updated 3 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆192Updated 3 years ago
- 中文无监督SimCSE Pytorch实现☆134Updated 4 years ago
- GAIIC2022商品标题实体识别Baseline,使用GlobalPointer实现,线上0.80349☆53Updated 3 years ago
- Pytorch进行长文本分类。这里用到的网络有:FastText、TextCNN、TextRNN、TextRCNN、Transformer☆48Updated 5 years ago
- 本项目是NLP领域一些任务的基准模型实现,包括文本分类、命名实体识别、实体关系抽取、NL2SQL、CKBQA以及BERT的各种下游任务应用。☆48Updated 4 years ago
- 苏神SPACE pytorch版本复现☆42Updated 3 years ago
- 中文文本句对相似度匹配-ATEC数据集☆22Updated 5 years ago
- NLP实验:新词挖掘+预训练模型继续Pre-training☆47Updated last year
- NLP关系抽取:序列标注、层叠式指针网络、Multi-head Selection、Deep Biaffine Attention☆101Updated 4 years ago
- 基于bert_mrc的中文命名实体识别☆43Updated 3 years ago
- bert pytorch模型微调用于的多标签文本分类☆134Updated 5 years ago
- experiments of some semantic matching models and comparison of experimental results.☆162Updated 2 years ago
- 微调预训练语言模型,解决多标签分类任务(可加载BERT、Roberta、Bert-wwm以及albert等知名开源tf格式的模型)☆140Updated 5 years ago
- ☆278Updated 3 years ago
- 2022搜狐校园算法大赛NLP赛道第一名开源方案(实验代码)☆87Updated 3 years ago
- CoSENT、STS、SentenceBERT☆169Updated 5 months ago
- 基于prompt的中文文本分类。☆55Updated 2 years ago
- 基于词汇信息融合的中文NER模型☆169Updated 3 years ago
- 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案☆72Updated 4 years ago
- NER任务SOTA模型BERT_MRC☆61Updated last year
- Use deep models including BiLSTM, ABCNN, ESIM, RE2, BERT, etc. and evaluate on 5 Chinese NLP datasets: LCQMC, BQ Corpus, ChineseSTS, OCN…☆76Updated 3 years ago
- Knowledge Graph☆174Updated 2 years ago
- 2021 搜狐校园文本匹配算法大赛方案☆17Updated 8 months ago
- TIANCHI-小布助手对话短文本语义匹配BERT baseline☆32Updated 4 years ago
- 文本分类baseline:BERT、半监督学习UDA、对抗学习、数据增强☆103Updated 4 years ago
- 本NER项目包含多个中文数据集,模型采用BiLSTM+CRF、BERT+Softmax、BERT+Cascade、BERT+WOL等,最后用TFServing进行模型部署,线上推理和线下推理。☆80Updated 4 years ago
- 实验苏神的CoSENT的Torch实现☆32Updated 3 years ago