heroinlin / SlowFastTRT
使用TensorRT部署SlowFast模型
☆21Updated 3 years ago
Alternatives and similar repositories for SlowFastTRT:
Users that are interested in SlowFastTRT are comparing it to the libraries listed below
- 基于AlphaPose的TensorRT 加速☆61Updated 3 years ago
- yolov5s_ncnn_inference pipeline☆21Updated 4 years ago
- yolox人脸检测,含关键点☆28Updated 3 years ago
- yolov5部署☆18Updated 2 years ago
- CenterTrack_caffe☆24Updated 4 years ago
- cpp rotation album,基于cpp eigen实现的3d旋转相册,GAMES101复现内容☆12Updated 2 years ago
- Intelligent monitoring of escalator.Function including traffic statistics,passenger retention detection and large object retention detect…☆24Updated 10 months ago
- U版yolov5 2.0的tensorrt加速☆37Updated 4 years ago
- tensorrt yolov7 without onnxparser☆24Updated 2 years ago
- TensorRT inference sample for ResNet50☆34Updated 6 years ago
- ☆27Updated 3 years ago
- Pose Estimation using OpenPose and TensorRT (only c++)☆18Updated 5 years ago
- yolov5_ncnn in ununtu16.04☆10Updated 4 years ago
- ☆12Updated 4 years ago
- Keypoints-detection in tensorflow and tensorRT C++☆14Updated 5 years ago
- ☆12Updated 3 years ago
- A multi object tracking Library Based on tensorrt☆53Updated 3 years ago
- YOLOv5 Quantization Aware Training with TensorRT☆14Updated 2 years ago
- 基于rknn的yolov5的cpp实现,包含各种依赖库,是一个完整工程,可直接编译运行☆19Updated 3 years ago
- ☆17Updated 3 years ago
- ☆63Updated 4 years ago
- 将Yolov3模型转成可以进行动态Batch的TensorRT推理以及Triton Inference Serving上部署的TensorRT模型☆28Updated 4 years ago
- caffe train face licenseplate reID action ocr centernet☆23Updated 4 years ago
- YOLOv5 in PyTorch > ONNX > CoreML > iOS☆9Updated 7 months ago
- Towards Real-Time Multi-Object Tracking☆29Updated 3 years ago
- 使用ONNXRuntime部署PP-YOLOE目标检测,支持PP-YOLOE-s、PP-YOLOE-m、PP-YOLOE-l、PP-YOLOE-x四种结构,包含C++和Python两个版本的程序☆18Updated 2 years ago
- yolov5模型训练后量化代码☆19Updated 4 years ago
- Implementation of YOLO and IOU tracker in C++☆17Updated 3 years ago
- PyTorch implementation of MobileFaceNets☆19Updated 5 years ago
- the C++ version of solov2 with ncnn☆76Updated 3 years ago