mytk2012 / YOLOV8_INT8_TRTLinks
☆13Updated last year
Alternatives and similar repositories for YOLOV8_INT8_TRT
Users that are interested in YOLOV8_INT8_TRT are comparing it to the libraries listed below
Sorting:
- Converting YOLOv8 models to TensorRT of FP16 and INT8☆17Updated last year
- A quick TensorRT deoloyment solution for YOLOv8.☆38Updated last year
- 高效部署:YOLO X, V3, V4, V5, V6, V7, V8, EdgeYOLO TRT推理 ™️ ,前后处理均由CUDA核函数实现 CPP/CUDA🚀☆49Updated 2 years ago
- yolov5 tensorrt int8量化方法汇总☆74Updated last year
- yolov8 ptq量化实战☆14Updated last year
- ☆23Updated 2 years ago
- yolov8 旋转目标检测部署,瑞芯微RKNN芯片部署、地平线Horizon芯片部署、TensorRT部署☆26Updated last year
- Speed up image preprocess with cuda when handle image or tensorrt inference☆68Updated 3 weeks ago
- ☆23Updated last year
- ☆38Updated 2 years ago
- ☆15Updated last year
- ☆113Updated last year
- https://github.com/shouxieai/hard_decode_trt windows编译版本☆13Updated 2 years ago
- Easy Training Official YOLOv8、YOLOv7、YOLOv6、YOLOv5 and Prune all_model using Torch-Pruning!☆64Updated last year
- 🚀🚀🚀This is an AI high-performance reasoning C++ library, Currently supports the deployment of yolov5, yolov7, yolov7-pose, yolov8, yol…☆128Updated last year
- ☆44Updated 2 years ago
- 使用pytorch_quantization对yolov8进行量化☆108Updated last year
- tensorrt sahi yolo 目标检测☆54Updated last week
- 对 tensorRT_Pro 开源项目理解☆21Updated 2 years ago
- yolov7 部署版本,后处理用python语言和C++语言形式进行改写,便于移植不同平台(caffe、onnx、tensorRT、RKNN、Horzion)。☆32Updated 2 years ago
- yolov8 tensorrt 加速☆53Updated 2 years ago
- 跟着Tensorrt_pro学习各种知识☆39Updated 2 years ago
- 🚀🚀🚀YOLOC is Combining different modules to build an different Object detection model.Including YOLOv3、YOLOv4、Scaled_YOLOv4、YOLOv5、YOLO…☆72Updated 2 years ago
- yolov8pose 瑞芯微 rknn 板端 C++部署。☆34Updated last year
- yolov8n 目标检测部署版本,便于移植不同平台(onnx、tensorRT、rknn、Horizon),全网部署最简单、速度最快的部署方式。☆41Updated last year
- ☆51Updated 2 years ago
- 使用YoloX+DeepLabV3Plus实现仪表的检测、指针表盘分割和刻度读数识别(借助ncnn框架)☆28Updated 7 months ago
- algorithm-cpp projects☆80Updated 2 years ago
- yolov11(yolov8)尝试了7种不同的部署方法,并对每种方法的优势进行了简单总结。不同的平台、不同的时耗或CPU占用需求,总有一种方法是适用的。针对想入门部署的也是一个很好的参考学习资料。☆24Updated 4 months ago
- Quantization Aware Training☆73Updated last year