GXL-123 / Bearing-fault-Diagnosis-based-on-deep-learningLinks
基于深度学习的机械设备故障诊断方法研究
☆47Updated 3 years ago
Alternatives and similar repositories for Bearing-fault-Diagnosis-based-on-deep-learning
Users that are interested in Bearing-fault-Diagnosis-based-on-deep-learning are comparing it to the libraries listed below
Sorting:
- 轴承故障诊断☆110Updated 3 years ago
- Using transformer to realize Bearing Fault Diagnosis☆66Updated 2 years ago
- 机械故障诊断公开数据集☆64Updated last year
- 基于注意力机制的少量样本故障诊断 pytorch☆247Updated 3 months ago
- 基于迁移学习DANN模型,对不同工况轴承进行故障诊断☆56Updated 4 years ago
- case study for remaining useful life estimation☆34Updated last year
- zggg1p / A-Domain-Adaption-Transfer-Learning-Bearing-Fault-Diagnosis-Model-Based-on-Wide-Convolution-Deep-NeuInspired by the idea of transfer learning, a combined approach is proposed. In the method, Deep Convolutional Neural Networks with Wide …☆138Updated 7 months ago
- 一种轻量化故障诊断框架——LiConvFormer☆114Updated 9 months ago
- 基于深度学习的机械故障诊断☆36Updated last year
- ☆68Updated 4 years ago
- ☆100Updated 2 years ago
- A transfer learning fault diagnosis repository covering popular algorithms☆309Updated last year
- Using LSTM to predict bearings' remaining useful life☆49Updated 4 years ago
- The intelligent fault diagnosis of HNU IDG☆110Updated 2 years ago
- 基于深度学习的滚动轴承故障诊断方法☆203Updated 6 years ago
- 1DCNN Fault Detection(1DCNN的轴承故障诊断)☆182Updated 3 years ago
- 基于小波时频图与 Swin Transformer 的轴承故障诊断方法☆49Updated 2 years ago
- Remain useful life prediction of rolling bearing.☆58Updated 4 years ago
- 这是一个首层卷积为宽卷积的深度神经网络Deep Convolutional Neural Networks with Wide First-layer Kernels (WDCNN)的实现,该模型具有优越的抗噪能力,可用于轴承的智能故障诊断。☆52Updated 2 years ago
- Remaining useful life prediction by Transformer-based Model☆52Updated 3 years ago
- 基于可变形卷积和注意力机制的滚动轴承故障诊断☆48Updated 4 years ago
- ☆62Updated 6 years ago
- Attention-based multihead model for optimized aircraft engine remaining useful life prediction☆56Updated last year
- 基于Laplace小波卷积和BiGRU的少量样本故障诊断方法 (Small sample fault diagnosis based on Laplace wavelet convolution and BiGRU)☆58Updated 4 months ago
- ☆47Updated 3 years ago
- 一种数字孪生辅助的高度不平衡故障诊断新框架☆98Updated last year
- We have developed an innovative deep learning model, PSECNet, for the prediction of bearing Remaining Useful Life (RUL) on the IEEE 2012 …☆31Updated last year
- Deep discriminative transfer learning network for cross-machine fault diagnosis☆111Updated 9 months ago
- PyTorch implementation of remaining useful life prediction with long-short term memories (LSTM), performing on NASA C-MAPSS data sets. Pa…☆161Updated 4 years ago
- Bearing fault diagnosis model based on MCNN-LSTM☆370Updated 2 years ago