foolchi / RecommendationLinks
Recommendation Practice for MovieLens
☆20Updated 11 years ago
Alternatives and similar repositories for Recommendation
Users that are interested in Recommendation are comparing it to the libraries listed below
Sorting:
- 利用MovieLens数据,Pearson相似度,分别基于User和Item构建一个简单的kNN推荐系统,并给出RMSE评测☆68Updated 7 years ago
- 推荐系统实践(基于近邻和LFM的推荐系统)☆102Updated 7 years ago
- 阿里移动推荐算法比赛☆79Updated 8 years ago
- Attention,Factorization Machine, Deep Learning, Recommender System☆39Updated 7 years ago
- 将SVD应用于推荐系统中的评分预测问题☆188Updated 10 years ago
- Datacastle National Big Data Online Competition First Place Source Code助学金精准预测冠军代码☆155Updated 6 years ago
- 卷积神经网络(CNN)提取影评特征构建电影推荐系统,pytorch实现☆130Updated 8 years ago
- tf-recsys contains collaborative filtering (CF) model based on famous SVD and SVD++ algorithm. Both of them are implemented by tensorflow…☆93Updated 6 years ago
- SVD & BPR+MatrixFactorization using a movie rating dataset; RNN+BPR+BPTT using taobao marketing dataset☆51Updated 7 years ago
- algorithms about recommender systems:probabilistic matrix factorization☆25Updated 8 years ago
- An movie recommendation based on tf☆13Updated 4 years ago
- A code repository for my Tianchi big data competition.☆116Updated 7 years ago
- Python 3.6 下的推荐算法解析,尽量使用简单的语言剖析原理,相似度度量、协同过滤、矩阵分解等☆107Updated 7 years ago
- ☆12Updated 5 years ago
- Code based in TensorFlow☆51Updated 6 years ago
- 简单的实现推荐系统的召回模型和排序模型,其中召回模型使用协同过滤算法,排序模型使用gbdt+lr算法☆58Updated 6 years ago
- 京东JData算法大赛Rank37☆47Updated 8 years ago
- LR, FM, DeepFM, xDeepFM, DIN, CF等推荐算法代码demo。采用TFRecords作为输入,方便实际场景应用。☆105Updated 5 years ago
- IJCAI18-阿里妈妈广告转化率预测代码(Rank29)☆97Updated 7 years ago
- 基于MovieLens-1M数据集实现的协同过滤算法demo☆391Updated 7 years ago
- ☆31Updated 7 years ago
- 阿里移动推荐算法☆127Updated 6 years ago
- A practical movie recommend project based on Item2vec.☆281Updated 5 years ago
- 数据科学竞赛实战☆166Updated last year
- Classic recommendation algorithms implementation☆42Updated 4 years ago
- 基于深度学习的CTR预估,从FM推演各深度学习CTR预估模型(附代码)☆208Updated 7 years ago
- 【腾讯社交广告算法大赛_决赛排名35】以移动app广告为研究对象,根据给定广告、用户和上下文情况信息,预测app广告点击后被激活的概率☆26Updated 8 years ago
- Explore CNN/LSTM/GRU parallel architectures for movie recommendations using Keras & TensorFlow in Python☆52Updated 7 years ago
- movie recommendation demo using collaborative filtering and lfm(spark mllib ALS)☆95Updated 9 years ago
- 阿里2015年天池大数据比赛,采用移动窗口采样加随机森林学习☆136Updated 10 years ago