dwpsutton / rf_selectLinks
Feature selection tool using random forest variable importance measures.
☆16Updated 9 years ago
Alternatives and similar repositories for rf_select
Users that are interested in rf_select are comparing it to the libraries listed below
Sorting:
- 数据预处理之缺失值处理,特征选择☆22Updated 6 years ago
- 常用的特征选择方法☆67Updated 3 years ago
- 基于遗传算法的特 征选择☆128Updated 6 years ago
- Supplementary material for the article "Combining Static and Dynamic Features for Multivariate Sequence Classification"☆11Updated 9 years ago
- XGB、LSTM、KNNR、SVR预测☆13Updated 11 months ago
- 随机森林,Random Forest(RF)☆427Updated 5 years ago
- Stacking classification and regression☆25Updated 6 years ago
- 集成学习Stacking方法详解☆78Updated 6 years ago
- ☆24Updated 7 years ago
- Bayesian Optimization and Grid Search for xgboost/lightgbm☆79Updated 10 months ago
- Time Series Prediction, Stateful LSTM; 时间序列预测,洗发水销量/股票走势预测,有状态循环神经网络☆57Updated 8 years ago
- A simple implementation of Transformer Encoder in keras. This repository also includes an example of Transformer as a classifier and its …☆16Updated 6 years ago
- 机器学习的特征工程,包括特征抽取、特征预处理、特征选择、特征降维。☆25Updated 6 years ago
- 在sklearn下,几种常用的特征选择方法☆41Updated 9 years ago
- Oversampling for imbalanced learning based on k-means and SMOTE☆129Updated 4 years ago
- 国内首个迁移学习赛题 中国平安前海征信“好信杯”迁移学习大数据算法大赛 FInSight团队作品(算法方案排 名第三)☆87Updated 7 years ago
- Features selector based on the self selected-algorithm, loss function and validation method☆681Updated 6 years ago
- Implementations of various feature selection methods☆24Updated 5 years ago
- 包括决策树和随机森林进行离职人员预测,Xgboost和lightGBM的应用☆287Updated 5 years ago
- Comparing XGBoost, CatBoost and LightGBM on TimeSeries Regression (RMSE, R2, AIC) on two different TimeSeries datasets.☆22Updated 6 years ago
- 机器学习集成模型之Stacking各类模型及工具源码☆118Updated 5 years ago
- 对截止至2017年7月17日的债券违约事件进行梳理归因,并寻找宏观流动性影响因素,组成数据集。运用Lasso回归进行特征提取后,输入带L2惩罚项LR、SVM、NN、GBDT、RF等机器学习模型进行违约预测,得出GBDT预测效果最好以及特征工程对线性模型预测效果具有重要性的结…☆58Updated 6 years ago
- ☆72Updated 4 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管 道机制,学习曲线,混淆矩阵,AUC曲线等☆53Updated 8 years ago
- 构建基于逻辑回归的评分卡模型☆46Updated 7 years ago
- feature selections and extractions☆88Updated last year
- 常见机器学习算法回归、分类应用示例,调参;包括基础的线性回归算法、集成学习、支持向量机等;调参包括网格搜索、随机搜索、贝叶斯优化、优化算法如GA优化等。☆24Updated 2 years ago
- ☆15Updated 5 years ago
- Compare how ANNs, RNNs, LSTMs, and LSTMs with attention perform on time-series analysis☆43Updated 7 years ago
- Transfer Learning JDA and TrAdaboost☆65Updated 7 years ago