agustincastro / RandomForest-MachineLearning
Python package for analysing data using machine learning techniques. Provides implementations of different kinds of decision trees and random forests in order to solve classification problems.
☆24Updated 5 years ago
Alternatives and similar repositories for RandomForest-MachineLearning:
Users that are interested in RandomForest-MachineLearning are comparing it to the libraries listed below
- MatLab implementation of W-QEISS, F-QEISS and W-MOSS: three algorithms for the selection of (quasi) equally informative subsets☆30Updated last year
- A graph clustering method with ant colony optimization for feature selection☆12Updated 4 years ago
- 天池大数据竞赛数据集&代码☆12Updated 5 years ago
- Python implementation of a random forest for use with continuous value attributes☆58Updated 7 years ago
- Python implementation of CART regression tree and random forests☆44Updated 10 years ago
- 支持向量机(SVM)——分类预测,包括多分类问题,核函数调参,不平衡数据问题,特征降维,网格搜索,管道机制,学习曲线,混淆矩阵,AUC曲线等☆52Updated 7 years ago
- Stacking classification and regression☆22Updated 5 years ago
- 本代码将用极端随机森林(Extremely Random Forests, ERF)来训练图像分类器。一个目标识 别系统就是利用图像分类器将图像分到已知的类别中。 ERF在机器学习领域非常流行,因为ERF 具有较快的速度和比较精确的准确度。我们基于图像的特征构建一组决策树,…☆10Updated 7 years ago
- 支持向量机,Support Vector Machine(SVM),多类分类☆31Updated 8 years ago
- Experiments on creating an SVM that can perform multi-class classification☆40Updated 10 years ago
- ☆15Updated 4 years ago
- 利用深度RBM构建多分类模型☆19Updated 9 years ago
- 使用CNN进行图像分类,并且附录了SIFT+BOG+SVM多分类器的机器学习分类模型☆39Updated 5 years ago
- 使用libsvm和遗传算法优化支持向量机的cost和gamma参数☆31Updated 12 years ago
- Feature reduction projections and classifier models are learned by training dataset and applied to classify testing dataset. A few approa…☆72Updated 3 years ago
- 基于遗传算法的特征选择☆127Updated 5 years ago
- cdSRC(Class-Dependent Sparse Representation Classifier) 基于类别的稀疏表示分类器的简单实现,MATLAB代码版本。下面是原论文地址:☆23Updated 10 years ago
- In this project, I will demonstrate how to combine Genetic Algorithm with Convolutional Neural Network☆42Updated 6 years ago
- 在sklearn下,几种常用的特征选择方法☆40Updated 9 years ago
- Feature selection tool using random forest variable importance measures.☆17Updated 8 years ago
- ☆61Updated 7 years ago
- Simple Python Adaboost Implementation☆25Updated 4 years ago
- A feature extractor based on Python 3, Tensorflow, and Scikit-learn created to improve the SVM accuracy to classify the MNIST dataset fas…☆70Updated 2 years ago
- 常用的特征选择方法☆68Updated 2 years ago
- Classification and Clustering using Support Vector Machine and Enhanced Fuzzy C-Means☆8Updated 7 years ago
- This repository contains the source code for four oversampling methods that I wrote in MATLAB: 1) SMOTE 2) Borderline SMOTE 3) Safe Level…☆37Updated 8 years ago
- Classify various radiology images into respective categories.Being done using various shape and texture features for feature extraction a…☆10Updated 8 years ago
- 随机森林,Random Forest(RF)☆396Updated 5 years ago
- ☆13Updated 7 years ago
- This project explores the different techniques (both scalable and non scalable) for Graph based semi supervised learning. Recent techniqu…☆14Updated 8 years ago