dongdongcan / cv_learning_resnet50
计算机视觉入门的保姆级项目。包括经典的传统计算机视觉算法和实操,基于 resnet50 AI 神经网络的算法学习和代码实操,不借助第三方库,从零手写 Resnet50 模型。和相关背景知识。 最后通过本仓库中的代码实战,从零手写 resnet50 神经网络,完成任意一张图片的识别,以及神经网络模型的性能优化。
☆154Updated this week
Alternatives and similar repositories for cv_learning_resnet50:
Users that are interested in cv_learning_resnet50 are comparing it to the libraries listed below
- a collection of computer vision projects&tools. 计算机视觉方向项目和工具集合。☆234Updated 9 months ago
- YOLO Tutorial☆172Updated 8 months ago
- 指针式仪表读数python程序☆77Updated 2 years ago
- 《动手学深度学习》习题解答,在线阅读地址如下:☆425Updated 8 months ago
- This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.☆140Updated last year
- 大模型/LLM推理和部署理论与实践☆221Updated 3 weeks ago
- Opencv 计算机视觉实战☆167Updated 5 years ago
- These are open and classic books for computer version engineers, it can help us from entry to practice.☆57Updated 2 years ago
- 动手学CV-Pytorch版☆899Updated last year
- ✔(已完结)最全面的 OpenCV 笔记【咕泡唐宇迪】☆580Updated 3 months ago
- Pytorch pipeline template☆151Updated 2 years ago
- 深度学习系统笔记,包含深度学习数学基础知识、神经网络基础部件详解、深度学习炼丹策略、模型压缩算法详解。☆452Updated 3 weeks ago
- 模型压缩的小白入门教程☆257Updated 4 months ago
- 使用YOLOv5+DeepLabV3Plus实现仪表的检测、指针表盘分割和刻度读数识别☆43Updated 3 years ago
- Multiple Object Tracking☆115Updated last year
- A new version of YOLOv1☆187Updated 2 years ago
- Official YOLOv8模型训练和部署☆902Updated 4 months ago
- OpenCV实现计算机视觉项目☆147Updated 4 years ago
- ☆83Updated 2 weeks ago
- Examples for SophonSDK☆106Updated 2 years ago
- UnderstandingDeepLearing中文翻译☆101Updated last year
- 这是一个yolov8-pytorch的仓库,可以用于训练自己的数据集。☆798Updated last year
- Auto-labelimg based on YOLOv5-5.0 & YOLOv5-Lite☆82Updated 2 years ago
- 这是用于储存基于Opencv的实战项目☆58Updated last month
- 通过带领大家解读Transformer模型来加深对模型的理解☆165Updated 3 weeks ago
- 飞桨智能标注,让标注快人一步☆266Updated 4 months ago
- OpenMMLab course index and stuff☆1,124Updated 9 months ago
- ffff☆110Updated 4 years ago
- 课件:数字图像处理,深度学习,计算机视觉,机器学习☆328Updated last month
- yolo master 本课程主要对yolo系列模型进行介绍,包括各版本模型的结构,进行的改进等,旨在帮助学习者们可以了解和掌握主要yolo模型的发展脉络,以期在各自的应用领域可以进一步创新并在自己的任务上达到较好的效果。☆49Updated this week