ZhangXinNan / building-deep-learning-frameworkLinks
《深度学习入门2-自制框架》Building Deep Learning Framework
☆45Updated last year
Alternatives and similar repositories for building-deep-learning-framework
Users that are interested in building-deep-learning-framework are comparing it to the libraries listed below
Sorting:
- 大模型/LLM推理和部署理论与实践☆370Updated 6 months ago
- 深度学习系统笔记,包含深度学习数学基础知识、神经网络基础部件详解、深度学习炼丹策略、模型压缩算法详解。☆503Updated last month
- 通过带领大家解读Transformer模型来加深对模型的理解☆230Updated 7 months ago
- 模型压缩的小白入门教程,PDF下载地址 https://github.com/datawhalechina/awesome-compression/releases☆349Updated last month
- 解锁HuggingFace生态的百般用法☆98Updated last year
- modern AI for beginners☆187Updated 4 months ago
- https://hnlp.boyuai.com☆105Updated last year
- 《动手学深度学习》习题解答,在线阅读地址如下:☆551Updated last year
- 《MATHEMATICS FOR MACHINE LEARNING》 一书的部分翻译。☆159Updated last year
- https://hds.boyuai.com☆44Updated last year
- wow-fullstack,令人惊叹的全栈开发教程☆234Updated last week
- ☆312Updated last year
- Datawhale开源教程《人工智能的数学基础》☆241Updated last month
- 图深度学习(葡萄书),在线阅读地址: https://datawhalechina.github.io/grape-book☆270Updated last year
- a chinese tutorial of git☆165Updated last week
- MindSpore online courses: Step into LLM☆482Updated 3 weeks ago
- 看图学大模型☆319Updated last year
- ☆146Updated last year
- Transformer的完整实现。详细构建Encoder、Decoder、Self-attention。以实际例子进行展示,有完整的输入、训练、预测过程。可用于学习理解self-attention和Transformer☆121Updated 9 months ago
- ☆366Updated 8 months ago
- LLM/MLOps/LLMOps☆128Updated 7 months ago
- an implementation of transformer, bert, gpt, and diffusion models for learning purposes☆159Updated last year
- https://hml.boyuai.com☆558Updated 2 years ago
- 《李宏毅生成式人工智能教程》,PDF下载地址:https://github.com/datawhalechina/leegenai-tutorial/releases☆222Updated 4 months ago
- 关于Transformer模型的最简洁pytorch实现,包含详细注释☆230Updated 2 years ago
- 🐳 LeetCode 算法笔记:面试、刷题、学算法。在线阅读地址:https://datawhalechina.github.io/leetcode-notes/☆1,028Updated 3 months ago
- 记录个人的学习历程。包括但不限于算法、机器学习、论文写作等。☆114Updated 10 months ago
- LLM101n: Let's build a Storyteller 中文版☆138Updated last year
- 本课程面对具有一定机器学习基础,但尚未入门的NLPer或经验尚浅的NLPer,尽力避免陷入繁琐枯燥的公式讲 解中,力求用代码展示每个模型背后的设计思想,同时也会带大家梳理每个模块下的技术演变,做到既知树木也知森林。☆89Updated 2 years ago
- 一个很小很小的RAG系统☆334Updated 8 months ago