cswhshi / segmentationLinks
☆11Updated 6 years ago
Alternatives and similar repositories for segmentation
Users that are interested in segmentation are comparing it to the libraries listed below
Sorting:
- 深度学习/计算机视觉工程向笔记☆11Updated 6 years ago
- CCFDF AI 数钢筋大赛☆172Updated 6 years ago
- To augment image dataset for detection☆58Updated 6 years ago
- 津南数字制造季军解决方案☆36Updated 6 years ago
- Hybrid_Task_Cascade in mmdetection☆20Updated 6 years ago
- cv的一些比赛☆45Updated 6 years ago
- mmdetection源码解析☆38Updated 6 years ago
- 天池雪浪布匹瑕疵检测,复赛线上746,排名14/2403☆131Updated 7 years ago
- ☆15Updated 6 years ago
- RetinaNet with backbone se_resnext50_32x4d, se_resnext101_32x4d☆25Updated 7 years ago
- DCIC 钢筋数量AI识别 baseline 0.98+。☆71Updated 4 years ago
- Minimal PyTorch implementation of YOLOv3☆61Updated 6 years ago
- 天池雪浪布匹瑕疵检测,初赛线上949,排名9/2403☆192Updated 7 years ago
- see details in configs/retinanet_se154_fpn_1x.py☆38Updated 6 years ago
- DF-Traffic-Sign-Identification☆30Updated 6 years ago
- GIoU loss simple example☆16Updated 6 years ago
- Tensorflow2.0下运行目标检测网络Centernet(基于see--的keras-centernet)☆37Updated 2 years ago
- 基于pytorch框架的classification万用模板☆261Updated 7 years ago
- winning sloution of Digtial Manfacturing Algorithm Competition II of JinNan Tianjin☆58Updated 6 years ago
- simple rebar detection competition https://www.datafountain.cn/competitions/332/details☆38Updated 6 years ago
- tensorflow implementation for Yolo v4☆59Updated 4 years ago
- 实现常用的one-stage和two-stage目标检测网络☆54Updated 7 years ago
- a data augment tool for object detection☆90Updated 7 years ago
- keras实现faster rcnn,end2end训练、预测; 持续更新中,见todo... ;欢迎试用、关注并反馈问题☆84Updated 5 years ago
- Keras_image_aug,图像分割部分的图像批增强案例,具体实现方式可参照:https://blog.csdn.net/wsLJQian/article/details/88616126☆21Updated 6 years ago
- Yolov3 implemented with brand new TensorFlow 2.0 API (both train and prediction)☆65Updated 2 years ago
- ☆225Updated 6 years ago
- 天池比赛,kaggle等等(Keras/PyTorch实战)☆182Updated 5 years ago
- ☆62Updated 5 years ago
- DataFountain-基于虚拟仿真环境下的自动驾驶交通标志识别 4th☆34Updated 6 years ago