beyondguo / Learn_PyTorchLinks
learn jiu wan shier l
☆53Updated 4 years ago
Alternatives and similar repositories for Learn_PyTorch
Users that are interested in Learn_PyTorch are comparing it to the libraries listed below
Sorting:
- SimCSE有监督与无监督实验复现☆152Updated last year
- 中文无监督SimCSE Pytorch实现☆135Updated 4 years ago
- 句子匹配 模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆99Updated 3 years ago
- WoBERT_pytorch☆40Updated 4 years ago
- 继续预训练中文bert☆31Updated 4 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆193Updated 3 years ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆178Updated 4 years ago
- 文本分类baseline:BERT、半监督学习UDA、对抗学习、数据增强☆104Updated 4 years ago
- Code for the paper `Text Classification via Large Language Models`.☆84Updated 2 years ago
- CoSENT、STS、SentenceBERT☆171Updated 11 months ago
- kpt code☆209Updated 2 years ago
- 基于prompt的中文文本分类。☆55Updated 2 years ago
- Hierarchy-aware Label Semantics Matching Network for Hierarchical Text Classification☆45Updated 2 years ago
- ☆32Updated 4 years ago
- 文本智能校对大赛(Chinese Text Correction)的baseline☆67Updated 3 years ago
- A concise implementation of SimCSE☆16Updated 4 years ago
- This repository implements a prompt tuning model for hierarchical text classification. This work has been accepted as the long paper "HPT…☆66Updated 2 years ago
- 中文机器阅读理解数据集☆109Updated 4 years ago
- llama,chatglm 等模型的微调☆91Updated last year
- ☆57Updated 3 years ago
- 记录NLP、CV、搜索、推荐等AI岗位最新情况。☆28Updated 2 years ago
- ☆31Updated last year
- experiments of some semantic matching models and comparison of experimental results.☆163Updated 3 months ago
- SimCSE中文语义相似度对比学习模型☆91Updated 3 years ago
- 真 · “Deep Learning for Humans”☆141Updated 4 years ago
- ☆88Updated 4 years ago
- Pattern-Exploiting Training在中文上的简单实验☆173Updated 5 years ago
- Survey of NLP+AI Conferences and Journals for NLPers☆45Updated 8 months ago
- Code for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation"☆165Updated 3 years ago
- 基于SpanBert的中文指代消解,pytorch实现☆102Updated 3 years ago