taishan1994 / prompt_text_classificationLinks
基于prompt的中文文本分类。
☆55Updated 2 years ago
Alternatives and similar repositories for prompt_text_classification
Users that are interested in prompt_text_classification are comparing it to the libraries listed below
Sorting:
- 中文无监督SimCSE Pytorch实现☆134Updated 4 years ago
- ☆87Updated 3 years ago
- ☆278Updated 3 years ago
- 苏神SPACE pytorch版本复现☆42Updated 3 years ago
- 句子匹配模型,包括无监督的SimCSE、ESimCSE、PromptBERT,和有监督的SBERT、CoSENT。☆99Updated 2 years ago
- 中文数据集下SimCSE+ESimCSE的实现☆192Updated 3 years ago
- NLP句子编码、句子embedding、语义相似度:BERT_avg、BERT_whitening、SBERT、SmiCSE☆176Updated 3 years ago
- 法研杯2021类案检索赛道三等奖方案☆50Updated 3 years ago
- ☆136Updated 3 years ago
- NER任务SOTA模型BERT_MRC☆61Updated last year
- ☆32Updated 4 years ago
- Data Augmentation with a Generation Approach for Low-resource Tagging Tasks☆80Updated 4 years ago
- Pytorch进行长文本分类。这里用到的网络有:FastText、TextCNN、TextRNN、TextRCNN、Transformer☆48Updated 5 years ago
- SimCSE有监督与无监督实验复现☆148Updated last year
- 论文复现《Named Entity Recognition as Dependency Parsing》☆130Updated 4 years ago
- 基于SpanBert的中文指代消解,pytorch实现☆98Updated 2 years ago
- 基于词汇信息融合的中文NER模型☆169Updated 3 years ago
- experiments of some semantic matching models and comparison of experimental results.☆162Updated 2 years ago
- TPlinker for NER 中文/英文命名实体识别☆126Updated 3 years ago
- GPLinker_pytorch☆83Updated 3 years ago
- code for ACL2020:《FLAT: Chinese NER Using Flat-Lattice Transformer》 我注释&修改&添加了部分源码,使得大家更容易复现这个代码。☆56Updated 4 years ago
- 基于GlobalPointer的实体/关系/事件抽取☆147Updated 3 years ago
- 百度2021年语言与智能技术竞赛多形态信息抽取赛道关系抽取部分torch版baseline☆52Updated 4 years ago
- Pattern-Exploiting Training在中文上的简单实验☆171Updated 4 years ago
- NLP关系抽取:序列标注、层叠式指针网络、Multi-head Selection、Deep Biaffine Attention☆101Updated 4 years ago
- 百度2021年语言与智能技术竞赛机器阅读理解torch版baseline☆53Updated 4 years ago
- 继续预训练中文bert☆31Updated 3 years ago
- SimCSE在中文上的复现,有监督+无监督☆277Updated 4 months ago
- 百度2021年语言与智能技术竞赛多形态信息抽取赛道事件抽取部分torch版baseline☆78Updated 4 years ago
- CCKS2020 面向中文短文本的实体链指任务。主要思路为:使用基于BiLSTM和Attention的语义模型进行Query和Doc的文本匹配,再针对匹配度进行pairwise排序,从而选出最优的知识库实体。☆47Updated 4 years ago