Tmcsn / AI-Challenger-2018-CropDiseaseLinks
☆41Updated 6 years ago
Alternatives and similar repositories for AI-Challenger-2018-CropDisease
Users that are interested in AI-Challenger-2018-CropDisease are comparing it to the libraries listed below
Sorting:
- 天池比赛,kaggle等等(Keras/PyTorch实战)☆182Updated 5 years ago
- Ai Challenger 2018 Competitions 农作物病害检测☆325Updated 5 years ago
- 天池雪浪布匹瑕疵检测,初赛线上949,排名9/2403☆192Updated 7 years ago
- ☆19Updated 4 years ago
- use pytorch to do image classfiication tasks☆201Updated 5 years ago
- 天池雪浪布匹瑕疵检测,复赛线上746,排名14/2403☆131Updated 7 years ago
- 2018广东工业智造大数据创新大赛——智能算法赛☆35Updated 6 years ago
- 雪浪制造AI挑战赛—视觉计算辅助良品检测☆99Updated 5 years ago
- 基于pytorch框架的classification万用模板☆258Updated 6 years ago
- rscup: 遥感图像场景分类☆102Updated 6 years ago
- DCIC 钢筋数量AI识别 baseline 0.98+。☆71Updated 4 years ago
- mutil-class focal loss implemented in keras☆158Updated 6 years ago
- use pytorch to do image classification☆140Updated 5 years ago
- 第五届百度西安交大大数据竞赛 城市区域功能分类 Baseline☆94Updated 3 years ago
- AIchallenger2018 Agricultural-Disease 农作物病害检测☆54Updated 5 years ago
- 使用PyTorch实现基于YOLOv3的目标检测器☆66Updated 7 years ago
- 天池竞赛Baseline分享(2018广东工业智造大数据创新大赛——智能算法赛,线上0.921无调参)☆260Updated 5 years ago
- rscup2019,分类赛道☆32Updated 5 years ago
- AI Challenger 2018 农作物病害检测☆52Updated 6 months ago
- CCFDF AI 数钢筋大赛☆172Updated 6 years ago
- AI Challenger -- 农作物病害识别☆158Updated 6 years ago
- Scene classification baseline. Test Acc:90.14%☆16Updated 6 years ago
- Keras_image_aug,图像分割部分的图像批增强案例,具体实现方式可参照:https://blog.csdn.net/wsLJQian/article/details/88616126☆21Updated 6 years ago
- 使用keras版本的Mask-RCNN来训练自己的数据,通过代码把样本制作麻烦的步骤变成简单方便。☆51Updated 7 years ago
- TianChi 2018广东工业智造大数据创新大赛——智能算法赛(复赛baseline代码)☆18Updated 6 years ago
- The use examples of tensorboard on pytorch☆148Updated 6 years ago
- 2019Baidu&XJTU_URFC Preliminary Round Code☆32Updated 6 years ago
- TIANCHI天池 2019县域农业大脑AI挑战赛 1/1520☆154Updated 4 years ago
- This is a game about garbage sorting organized by Huawei Cloud, this repository stores my plan.☆68Updated 5 years ago
- Focal Loss for multi-class classification☆55Updated 7 years ago