PowersYang / Coursera_ML_ExerciseLinks
吴恩达机器学习公开课作业中文版本以及Python实现
☆81Updated 6 years ago
Alternatives and similar repositories for Coursera_ML_Exercise
Users that are interested in Coursera_ML_Exercise are comparing it to the libraries listed below
Sorting:
- coursera吴恩达机器学习课程作业自写Python版本+Matlab原版☆936Updated 7 years ago
- ☆418Updated 4 years ago
- 《机器学习实战》的python3源码☆1,332Updated 5 years ago
- 周志华-机器学习☆279Updated 5 years ago
- 深度学习笔记☆807Updated 4 years ago
- Coursera吴恩达机器学习课程笔记及资源整理☆531Updated last year
- NTU ML2017 Spring and Fall Homework Hung-yi_Li 李宏毅老师 机器学习课程作业☆876Updated 6 years ago
- ✒统计学习方法第二版(李航) 学习笔记、代码实现、课后习题☆361Updated 6 years ago
- ⚡️⚡️⚡️《机器学习实战》代码(基于Python3)🚀☆960Updated 5 years ago
- 机器学习初学者公众号作品☆2,268Updated 4 years ago
- 吴恩达(Andrew Ng)在coursera的机器学习课程习题的python实现☆129Updated 6 years ago
- notes of machine learning algorithm derivation☆780Updated 5 years ago
- Data&code for Machine-Learning-in-Action by Python3 | 《机器学习实战》数据与Python3源码☆418Updated 2 years ago
- 吴恩达《深度学习》学习笔记(xmind)、代码视频讲解☆461Updated 5 years ago
- note for the book Python for Data Analysis: Data Wrangling with Pandas, Numpy, and IPython by Wes McKinney☆218Updated 5 years ago
- 机器学习-Coursera-吴恩达- python+Matlab代码实现☆200Updated 3 years ago
- Exercises answers to the book "machine-learning" written by Zhou Zhihua。周志华《机器学习》课后习题,个人解答。各算法都拿numpy和pandas实现了一遍☆1,605Updated 2 years ago
- 吴恩达 深度学习课程 课件与作业☆91Updated 6 years ago
- 台湾大学李宏毅老师机器学习☆1,104Updated 6 years ago
- Coursera Machine Learning (Andrew Ng) --- python code☆127Updated 8 years ago
- 主要展示Datawhale的组队学习计划。☆2,283Updated 2 years ago
- 个人使用jupyter notebook整理的peter的《机器学习实战》代码,使其更有层次感,更加连贯,也加了一些自己的修改,以及注释☆305Updated 7 years ago
- Python 进阶学习笔记☆502Updated 5 years ago
- 《统计学习方法》笔记-基于Python算法实现☆2,124Updated 7 years ago
- 微专业: 吴恩达 深度学习工程师 作业☆205Updated 7 years ago
- ☆323Updated last year
- 主要存储Datawhale组队学习中“编程、数据结构与算法”方向的资料。☆839Updated last year
- 🔥机器学习/深度学习/Python/大模型/多模态/LLM/deeplearning/Python/Algorithm interview/NLP Tutorial☆768Updated 4 months ago
- My personal notes☆1,741Updated 2 years ago
- 深度学习500问,以问答形式对常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题进行阐述,以帮助自己及有需要的读者。 全书分为18个章节,50余万字。由于水平有限,书中不妥之处恳请广大读者 批评指正。 未完待续............ 如有意合作,联系sc…☆170Updated 6 years ago